Background: Despite great advances in proliferative diabetic retinopathy (PDR) therapy over the last decades, one third of treated patients continue to lose vision. While resident vitreous macrophages called hyalocytes have been implicated in the pathophysiology of vitreoretinal proliferative disease previously, little is known about their exact role in PDR. In this study, we address molecular and cellular alterations in the vitreous of PDR patients as a means towards assessing the potential contribution of hyalocytes to disease pathogenesis.
View Article and Find Full Text PDFPolycyclic polyprenylated acylphloroglucinols (PPAPs) combine compelling structural complexity with effective biological activity. The total synthesis of Hyperfirin is reported as one linear sequence. Key to this novel modular strategy is to access the bicyclo[3.
View Article and Find Full Text PDFRipples are a typical form of neural activity in hippocampal neural networks associated with the replay of episodic memories during sleep as well as sleep-related plasticity and memory consolidation. The emergence of ripples has been observed both dependent as well as independent of input from other brain areas and often coincides with dendritic spikes. Yet, it is unclear how input-evoked and spontaneous ripples as well as dendritic excitability affect plasticity and consolidation.
View Article and Find Full Text PDFAge-related diseases, such as osteoarthritis, Alzheimer's disease, diabetes, and cardiovascular disease, are often associated with chronic unresolved inflammation. Neutrophils play central roles in this process by releasing tissue-degenerative proteases, such as cathepsin G, as well as pro-inflammatory leukotrienes produced by the 5-lipoxygenase (5-LO) pathway. Boswellic acids (BAs) are pentacyclic triterpene acids contained in the gum resin of the anti-inflammatory remedy frankincense that target cathepsin G and 5-LO in neutrophils, and might thus represent suitable leads for intervention with age-associated diseases that have a chronic inflammatory component.
View Article and Find Full Text PDFThe acylphloroglucinol myrtucommulone A (MC) causes mitochondrial dysfunctions by direct interference leading to apoptosis in cancer cells, but the molecular targets involved are unknown. Here, we reveal the chaperonin heat-shock protein 60 (HSP60) as a molecular target of MC that seemingly modulates HSP60-mediated mitochondrial functions. Exploiting an unbiased, discriminative protein fishing approach using MC as bait and mitochondrial lysates from leukemic HL-60 cells as target source identified HSP60 as an MC-binding protein.
View Article and Find Full Text PDF