Introduction: 46,XY gonadal dysgenesis is a condition that is characterised by undeveloped testes in individuals with a male karyotype. Mutations in many genes that underlie this condition have been identified; however, there are still a considerable number of patients with an unknown genetic background. Recently, a mutation in the STARD8 X-linked gene in two sisters with 46,XY gonadal dysgenesis has been reported.
View Article and Find Full Text PDFIn recent years, growing evidence demonstrates that mammalian Nanos RNA-binding proteins (Nanos1, Nanos2, and Nanos3), known for their indispensable roles in germline development, are overexpressed in a variety of cancers. This overexpression contributes to various oncogenic properties including cancer growth, invasiveness, and metastasis. Here, we highlight recent findings regarding the role of mammalian Nanos RNA-binding proteins and the mechanisms of their overexpression in cancer.
View Article and Find Full Text PDFThe 46,XX testicular DSD (disorder/difference of sexual development) and 46,XX ovotesticular DSD (46,XX TDSD and 46,XX OTDSD) phenotypes are caused by genetic rearrangements or point mutations resulting in imbalance between components of the two antagonistic, pro-testicular and pro-ovarian pathways; however, the genetic causes of 46,XX TDSD/OTDSD are not fully understood, and molecular diagnosis for many patients with the conditions is unavailable. Only recently few mutations in the ( transcription factor; 11p13) gene were described in a group of 46,XX TDSD and 46,XX OTDSD individuals. The protein contains a DNA/RNA binding domain consisting of four zinc fingers (ZnF) and a three-amino acid (KTS) motif that is present or absent, as a result of alternative splicing, between ZnF3 and ZnF4 (±KTS isoforms).
View Article and Find Full Text PDFBackground: The functions of RNA molecules are mainly determined by their secondary structures. These functions can also be predicted using bioinformatic tools that enable the alignment of multiple RNAs to determine functional domains and/or classify RNA molecules into RNA families. However, the existing multiple RNA alignment tools, which use structural information, are slow in aligning long molecules and/or a large number of molecules.
View Article and Find Full Text PDF