Soybean hairy roots transformed with the resveratrol synthase and resveratrol oxymethyl transferase genes driven by constitutive Arabidopsis actin and CsVMV promoters were characterized. Transformed hairy roots accumulated glycoside conjugates of the stilbenic compound resveratrol and the related compound pterostilbene, which are normally not synthesized by soybean plants. Expression of the non-native stilbenic phytoalexin synthesis in soybean hairy roots increased their resistance to the soybean pathogen Rhizoctonia solani.
View Article and Find Full Text PDFA nonantibiotic/herbicide-resistance selection system for plastid transformation is described here in technical detail. This system is based on the feedback-insensitive anthranilate synthase (AS) α-subunit gene of tobacco (ASA2) as a selective marker and tryptophan (Trp) or indole analogs as selection agents. AS catalyzes the first reaction in the Trp biosynthetic pathway, naturally compartmentalized in the plastids, by converting chorismate to anthranilate and is subjected to feedback inhibition by Trp.
View Article and Find Full Text PDFThe effects of resveratrol and pterostilbene on in vitro growth of three soybean pathogens were tested to determine whether these stilbenic compounds could potentially be targets to increase innate resistance in transgenic soybean plants. Growth of Macrophomina phaseolina, Rhizoctonia solani, and Sclerotinia sclerotiorum was measured on solid and in liquid media amended with resveratrol and pterostilbene (concentration in the media of resveratrol at 100 μg/ml and pterostilbene at 25 μg/ml). All three fungi were very sensitive to pterostilbene in potato dextrose agar (PDA), which reduced colony area of each of the three pathogens to less than half of the control 3 days after incubation.
View Article and Find Full Text PDFThe response of soybean transgenic plants, with suppressed synthesis of isoflavones, and nontransgenic plants to two common soybean pathogens, Macrophomina phaseolina and Phytophthora sojae, was studied. Transgenic soybean plants of one line used in this study were previously generated via bombardment of embryogenic cultures with the phenylalanine ammonia lyase, chalcone synthase, and isoflavone synthase (IFS2) genes in sense orientation driven by the cotyledon-preferable lectin promoter (to turn genes on in cotyledons), while plants of another line were newly produced using the IFS2 gene in sense orientation driven by the Cassava vein mosaic virus constitutive promoter (to turn genes on in all plant parts). Nearly complete inhibition of isoflavone synthesis was found in the cotyledons of young seedlings of transgenic plants transformed with the IFS2 transgene driven by the cotyledon-preferable lectin promoter compared with the untransformed control during the 10-day observation period, with the precursors of isoflavone synthesis being accumulated in the cotyledons of transgenic plants.
View Article and Find Full Text PDFMetabolic changes were studied, which accompanied the conversion of 6month old HiII maize non-regenerable (NR) calli into regenerable (R) calli when cultured for 63days with 10% polyethylene glycol (PEG) (3350MW) in culture medium. The conversion of 6month old NR to R callus morphotype caused by PEG application decreased cell wall contents in callus dry mass and changed cell wall phenolics making their profile similar to that of R callus by reduction of lignin and ester- and ether-bound phenolic concentrations, including p-coumaric acid and ester- and ether-bound diferulates and by increase of the ratios of ester- and ether-bound ferulic acid/coumaric acid and ferulic acid/diferulic acid in cell walls of NR callus. Some similar changes of cell wall phenolics caused by PEG application were also found in 48month old NR callus, that changed the morphology, but did not regenerate plants.
View Article and Find Full Text PDF