Publications by authors named "J J Torres Juarez"

We demonstrate the use of [2-(9-carbazol-9-yl)ethyl]phosphonic acid (2PACz) and [2-(3,6-di--butyl-9-carbazol-9-yl)ethyl]phosphonic acid (-Bu-2PACz) as anode modification layers in metal-halide perovskite quantum dot light-emitting diodes (QLEDs). Compared to conventional QLED structures with PEDOT:PSS (poly(3,4-ethylenedioxythiophene) polystyrenesulfonate)/PVK (poly(9-vinylcarbazole)) hole-transport layers, the QLEDs made with phosphonic acid (PA)-modified indium tin oxide (ITO) anodes show an over seven-fold increase in brightness, achieving a brightness of 373,000 cd m, one of the highest brightnesses reported to date for colloidal perovskite QLEDs. Importantly, the onset of efficiency roll-off, or efficiency droop, occurs at ∼1000-fold higher current density for QLEDs made with PA-modified anodes compared to control QLEDs made with conventional PEDOT:PSS/PVK hole transport layers, allowing the devices to sustain significantly higher levels of external quantum efficiency at a brightness of >10 cd m.

View Article and Find Full Text PDF

In this work, a kinetic study and modeling of the decomposition of a rock sample in an ascorbic acid medium with a high content of lepidolite phase were carried out, the results of which are of great importance due to the sample's high lithium (Li) content. The rock sample was characterized by X-ray diffraction (XRD), inductively coupled plasma atomic emission spectroscopy (ICP-AES) and X-ray photoelectron spectroscopy (XPS), and the mineral species detected in the sample were lepidolite, at 65.3%, quartz, at 30.

View Article and Find Full Text PDF

Fragile X syndrome (FXS) is the leading hereditary cause of intellectual disability and the most commonly associated genetic cause of autism. Historically, research into its pathophysiology has focused predominantly on neurons; however, emerging evidence suggests involvement of additional cell types and systems. The objective of this study was to review and synthesize current evidence regarding the pathophysiology of Fragile X syndrome.

View Article and Find Full Text PDF

It has been shown that magnetic resonance imaging (MRI) guidance versus computed tomography (CT) guidance for aggressive margin-reduction (AMR) for stereotactic body radiotherapy (SBRT) in prostate cancer reduces acute toxicity, but the longer-term benefits are unknown. We performed a secondary analysis of MIRAGE, a phase 3 randomized clinical trial of MRI-guided SBRT for prostate cancer, to determine whether AMR with MRI guidance significantly reduced 2-yr physician-scored or patient-reported toxic effects in comparison to CT guidance. The cumulative incidence of 2-yr physician-scored toxicity, defined as grade ≥2 genitourinary (GU) and gastrointestinal (GI) toxic effects according to Common Terminology Criteria for Adverse Events v4.

View Article and Find Full Text PDF

Background And Objective: Prostate-specific membrane antigen (PSMA) molecular imaging is widely used for disease assessment in prostate cancer (PC). Artificial intelligence (AI) platforms such as automated Prostate Cancer Molecular Imaging Standardized Evaluation (aPROMISE) identify and quantify locoregional and distant disease, thereby expediting lesion identification and standardizing reporting. Our aim was to evaluate the ability of the updated aPROMISE platform to assess treatment responses based on integration of the RECIP (Response Evaluation Criteria in PSMA positron emission tomography-computed tomography [PET/CT]) 1.

View Article and Find Full Text PDF