This review article aims to address common research questions in passive polarized vision for robotics. What kind of polarization sensing can we embed into robots? Can we find our geolocation and true north heading by detecting light scattering from the sky as animals do? How should polarization images be related to the physical properties of reflecting surfaces in the context of scene understanding? This review article is divided into three main sections to address these questions, as well as to assist roboticists in identifying future directions in passive polarized vision for robotics. After an introduction, three key interconnected areas will be covered in the following sections: embedded polarization imaging; polarized vision for robotics navigation; and polarized vision for scene understanding.
View Article and Find Full Text PDFThe advantageous versatility of hexapod robots is often accompanied by high power consumption, while animals have evolved an energy efficient locomotion. However, there are a lack of methods able to compare and apply animals' energetic optimizations to robots. In this study, we applied our method to a full servomotor-based hexapod robot to evaluate its energetic performance.
View Article and Find Full Text PDFTrue north can be determined on Earth by three means: magnetic compasses, stars, and via the global navigation satellite systems (GNSS), each of which has its own drawbacks. GNSS are sensitive to jamming and spoofing, magnetic compasses are vulnerable to magnetic interferences, and the stars can be used only at night with a clear sky. As an alternative to these methods, nature-inspired navigational cues are of particular interest.
View Article and Find Full Text PDFHow do bees perceive altitude changes so as to produce safe displacements within their environment? It has been proved that humans use invariants, but this concept remains little-known within the entomology community. The use of a single invariant, the optical speed rate of change, has been extensively demonstrated in bees in a ground-following task. Recently, it has been demonstrated that another invariant, the splay angle rate of change, could also be used by bees to adjust their altitude.
View Article and Find Full Text PDF