Phys Chem Chem Phys
November 2018
Parent hemiporphycene, a recently obtained constitutional isomer of porphyrin, exists in room temperature solutions and polymer matrices in the form of two trans tautomers interconverting via double hydrogen transfer. Using confocal fluorescence microscopy, it was possible to monitor tautomerization in single hemiporphycene molecules embedded in a PMMA film by monitoring the spectral and temporal evolution of their fluorescence spectra. The emission spectra of the two tautomeric forms are similar to those obtained from ensemble studies.
View Article and Find Full Text PDFHemiporphycene (HPc), a constitutional isomer of porphyrin, is studied under supersonic expansion conditions by means of laser-induced fluorescence, visible-visible hole-burning experiments, single vibronic level fluorescence techniques, and quantum chemical calculations. Only one form of jet-cooled HPc is observed, in contrast to solution studies that evidence a mixture of two tautomeric forms separated in energy by ∼1 kcal/mol. Reliable structural assignment is provided by simulating absorption and emission patterns at the density functional theory and time-dependent density functional theory levels of theory.
View Article and Find Full Text PDFWe describe various experimental approaches that have been used to obtain a detailed understanding of double hydrogen transfer in porphycene, a model system for intramolecular hydrogen bonding and tautomerism. The emerging picture is that of a multidimensional tautomerization coordinate, with several vibrational modes acting as reaction-promoters or inhibitors through anharmonic intermode coupling. Tunnelling processes, coherent in the case of isolated molecules and incoherent in condensed phases, are found to play a major role even at elevated temperatures.
View Article and Find Full Text PDFWe report on laser-induced fluorescence excitation and dispersed fluorescence spectra of two isomeric compounds: 1,4- and 1,8-diazatriphenylene (1,4- and 1,8-DAT) isolated in supersonic molecular jets, and their 1:1 complexes with protic solvents. We found that the ground and excited state vibronic patterns of bare 1,4-DAT differ significantly from those of 1,8-DAT, and those of the complexes of both isomers. A marked activity of several out-of-plane vibrations in 1,4-DAT and the symptoms of the distortion of the S excited molecule were diagnosed from the vibronic spectra, whereas planar structures were predicted for 1,8-DAT in S and S states.
View Article and Find Full Text PDFPorphycene (Pc) is a well-known model for studying double hydrogen transfer, which shows vibrational-mode-specific tunneling splitting when isolated in supersonic jets or helium nanodroplets. The effect of deuteration on tunneling splitting is reported for jet-cooled heterogeneous, deuterated Pc samples (Pc-d(mix)) with the prevailing contribution of Pc-d12 isotopologue. The sample introduced into the gas phase using laser desorption is studied by means of laser-induced fluorescence (LIF) and single vibronic level fluorescence (SVLF) measurements, in combination with quantum chemical calculations.
View Article and Find Full Text PDF