Publications by authors named "J J Saenz"

The continuous interaction between phages and their respective hosts has resulted in the evolution of multiple bacterial immune mechanisms. However, the diversity and prevalence of antiviral defense systems in complex communities are still unknown. We therefore investigated the diversity and abundance of viral defense systems in 3,038 high-quality bacterial and archaeal genomes from the rumen.

View Article and Find Full Text PDF
Article Synopsis
  • * Using data from the Mexican Health and Aging Study, the research analyzes how actors' (individuals') and partners' (spouses') perceptions of marital power relate to cognitive performance over time, with an emphasis on depression as a mediating factor.
  • * Results indicate that lower marital power is associated with decreased cognition, especially for husbands, while women's marital power imbalances lead to higher depression rates for both partners, suggesting a significant link between marital dynamics and cognitive health in older adults.
View Article and Find Full Text PDF

All cells are encapsulated by a lipid membrane that facilitates their interactions with the environment. How cells manage diverse mixtures of lipids, which dictate membrane property and function, is experimentally challenging to address. Here, we present an approach to tune and minimize membrane lipid composition in the bacterium Mycoplasma mycoides and its derived 'minimal cell' (JCVI-Syn3A), revealing that a two-component lipidome can support life.

View Article and Find Full Text PDF

All cells are encapsulated by a lipid membrane which facilitates the interaction between life and its environment. How life exploits the diverse mixtures of lipids that dictate membrane property and function has been experimentally challenging to address. We introduce an approach to tune and minimize lipidomes in and the Minimal Cell (JCVI-Syn3A) revealing that a 2-component lipidome can support life.

View Article and Find Full Text PDF

Surface availability of the dopamine (DA) transporter (DAT) critically influences DA transmission. Here, we present a protocol that describes the preparation of mouse ventral midbrain neurons, the expression of a new optical sensor, DAT-pHluorin, and the utilization of this sensor to analyze the surface availability of DAT in live neurons via fluorescent microscopy. This approach allows quantitative measures of basal surface DAT fraction under genetic backgrounds of interest and live trafficking of DAT in response to psychoactive substances.

View Article and Find Full Text PDF