For decades, the sexuality of trans and gender diverse people has been researched from a pathologising and medical perspective. This approach makes assumptions about the experiences of trans people, limiting concern for unique and individual experiences, especially for those with non-binary or gender diverse identities. A growing number of articles however are beginning to take the viewpoints of trans people seriously, taking into consideration their unique experiences and insights within the context of sexual and romantic relationships.
View Article and Find Full Text PDFTranscription termination by RNA polymerase II (RNA Pol II) is linked to RNA 3' end processing by the cleavage and polyadenylation factor (CPF or CPSF). CPF contains endonuclease, poly(A) polymerase, and protein phosphatase activities, which cleave and polyadenylate pre-mRNAs and dephosphorylate RNA Pol II to control transcription. Exactly how the RNA 3' end processing machinery is coupled to transcription remains unclear.
View Article and Find Full Text PDFUsage of Unmanned Aerial Vehicles (UAVs) for different tasks is widespread, as UAVs are affordable, easy to manoeuvre and versatile enough to execute missions in a reliable manner. However, there are still fields where UAVs play a minimal role regardless of their possibilities. One of these application domains is mobile network testing and measurement.
View Article and Find Full Text PDFGene expression is controlled in a dynamic and regulated manner to allow for the consistent and steady expression of some proteins as well as the rapidly changing production of other proteins. Transcription initiation has been a major focus of study because it is highly regulated. However, termination of transcription also plays an important role in controlling gene expression.
View Article and Find Full Text PDFDuring their synthesis in the cell nucleus, most eukaryotic mRNAs undergo a two-step 3'-end processing reaction in which the pre-mRNA is cleaved and released from the transcribing RNA polymerase II and a polyadenosine (poly(A)) tail is added to the newly formed 3'-end. These biochemical reactions might appear simple at first sight (endonucleolytic RNA cleavage and synthesis of a homopolymeric tail), but their catalysis requires a multi-faceted enzymatic machinery, the cleavage and polyadenylation complex (CPAC), which is composed of more than 20 individual protein subunits. The activity of CPAC is further orchestrated by Poly(A) Binding Proteins (PABPs), which decorate the poly(A) tail during its synthesis and guide the mRNA through subsequent gene expression steps.
View Article and Find Full Text PDF