Urea electrolysis is an emerging approach to treating urea-enriched wastewater and an attractive alternative anodic process to the oxygen evolution reaction (OER) in electrochemical clean energy conversion and storage technologies (e. g., hydrogen production and CO electroreduction).
View Article and Find Full Text PDFDeveloping electrocatalysts for urea oxidation reaction (UOR) works toward sustainably treating urea-enriched water. Without a clear understanding of how UOR products form, advancing catalyst performance is currently hindered. This work examines the thermodynamics of UOR pathways to produce N, NO , and NO on a (0001) β-Ni(OH) surface using density functional theory with the computational hydrogen electrode model.
View Article and Find Full Text PDFExpanding our understanding of the structure-performance relationship in nanoscale electrocatalysts for urea electrolysis is crucial for efficient urea waste treatment and concomitant cathodic hydrogen production or CO reduction. Here, we elucidate the effect of the lattice strain in Pd-Ni core-shell nanocubes on the dominance of urea overoxidation pathway.
View Article and Find Full Text PDFThe electrochemical urea oxidation reaction (UOR) to N represents an efficient route to simultaneous nitrogen removal from N-enriched waste and production of renewable fuels at the cathode. However, the overoxidation of urea to NO usually dominates over its oxidation to N at Ni(OH) -based anodes. Furthermore, detailed reaction mechanisms of UOR remain unclear, hindering the rational catalyst design.
View Article and Find Full Text PDFShape and surface chemistry control in copper nanoparticle synthesis is an important research area due to a wide range of developing applications of this material in catalysis, energy conversion, sensing and many others. In addition to being an inexpensive and abundant metal, copper is an attractive photocatalyst due to its optical properties in the visible range. Here, we report a facile, tunable and sustainable methodology for synthesizing Pd-seeded Cu nanoparticles with various shapes, including cubes, spheres, raspberry-like particles and cages stabilized with a bilayer of a cationic surfactant in aqueous media.
View Article and Find Full Text PDF