Circadian rhythms are ∼24-h biological oscillations that enable organisms to anticipate daily environmental cycles, so that they may designate appropriate day/night functions that align with these changes. The molecular clock in animals and fungi consists of a transcription-translation feedback loop, the plant clock is comprised of multiple interlocking feedback-loops, and the cyanobacterial clock is driven by a phosphorylation cycle involving three main proteins. Despite the divergent core clock mechanisms across these systems, all circadian clocks are able to buffer period length against changes in the ambient growth environment, such as temperature and nutrients.
View Article and Find Full Text PDFCircadian clocks temporally coordinate daily organismal biology over the 24-h cycle. Their molecular design, preserved between fungi and animals, is based on a core-oscillator composed of a one-step transcriptional-translational-negative-feedback-loop (TTFL). To test whether this evolutionarily conserved TTFL architecture is the only plausible way for achieving a functional circadian clock, we adopted a transcriptional rewiring approach, artificially co-opting regulators of the circadian output pathways into the core-oscillator.
View Article and Find Full Text PDFIn the Neurospora circadian system, the White Collar Complex (WCC) drives expression of the principal circadian negative arm component frequency (frq). FRQ interacts with FRH (FRQ-interacting RNA helicase) and CKI, forming a stable complex that represses its own expression by inhibiting WCC. In this study, a genetic screen identified a gene, designated as brd-8, that encodes a conserved auxiliary subunit of the NuA4 histone acetylation complex.
View Article and Find Full Text PDFIn the circadian system, the White Collar Complex (WCC) drives expression of the principal circadian negative arm component ( ). FRQ interacts with FRH (FRQ-interacting helicase) and CK-1 forming a stable complex that represses its own expression by inhibiting WCC. In this study, a genetic screen identified a gene, designated as , that encodes a conserved auxiliary subunit of the NuA4 histone acetylation complex.
View Article and Find Full Text PDF