We have previously shown that the combination of radiotherapy with human umbilical-cord-derived mesenchymal stromal/stem cells (MSCs) cell therapy significantly reduces the size of the xenotumors in mice, both in the directly irradiated tumor and in the distant nonirradiated tumor or its metastasis. We have also shown that exosomes secreted from MSCs preirradiated with 2 Gy are quantitatively, functionally and qualitatively different from the exosomes secreted from nonirradiated mesenchymal cells, and also that proteins, exosomes and microvesicles secreted by MSCs suffer a significant change when the cells are activated or nonactivated, with the amount of protein present in the exosomes of the preirradiated cells being 1.5 times greater compared to those from nonirradiated cells.
View Article and Find Full Text PDFThis study proposes the use of new materials based on core-shell structure magnetic microparticles with Ag (Ag(0)-MPs) on their surface to remove bromides and chlorides from waters intended for human consumption. Hydrogen peroxide was used as oxidizing agent, Ag(0)-MPs is thereby oxidized to Ag (I)-MPs, which, when in contact with Cl and Br ions, form the corresponding silver halide (AgCl and AgBr) on the surface of Ag-MPs. The concentration of Cl and Br ions was followed by using ion selective electrodes (ISEs).
View Article and Find Full Text PDFBackground: We have recently shown that radiotherapy may not only be a successful local and regional treatment but, when combined with MSCs, may also be a novel systemic cancer therapy. This study aimed to investigate the role of exosomes derived from irradiated MSCs in the delay of tumor growth and metastasis after treatment with MSC + radiotherapy (RT).
Methods: We have measured tumor growth and metastasis formation, of subcutaneous human melanoma A375 xenografts on NOD/SCID-gamma mice, and the response of tumors to treatment with radiotherapy (2 Gy), mesenchymal cells (MSC), mesenchymal cells plus radiotherapy, and without any treatment.
Sci Total Environ
December 2017
The objective of this study was to remove halides from waters by silver nanoparticles (AgNPs) and hydrogen peroxide (HO). The experimental parameters were optimized and the mechanism involved was also determined. The AgNP/HO process proved efficacious for bromide and chloride removal from water through the selective precipitation of AgCl and AgBr on the AgNP surface.
View Article and Find Full Text PDFGamma radiation has been used to induce the degradation of compounds used as plasticizers and herbicides such as phthalic acid (PA), bisphenol A (BPA), diphenolic acid (DPA), 2,4-dichlorophenoxy-acetic acid (2,4-D), and 4-chloro-2-methylphenoxyacetic acid (MCPA) in aqueous solution, determining the dose constants, removal percentages, and radiation-chemical yields. The reaction rate constants of hydroxyl radical (HO), hydrated electron (eaq(-)) and hydrogen atom (H) with these pollutants were also obtained by means of competition kinetics, using 3-aminopyridine and atrazine as reference compounds. The results indicated that the elimination of these pollutants with gamma radiation mainly follows the oxidative pathway through reaction with HO radicals.
View Article and Find Full Text PDF