Metabolism-disrupting agents (MDAs) are chemical, infectious or physical agents that increase the risk of metabolic disorders. Examples include pharmaceuticals, such as antidepressants, and environmental agents, such as bisphenol A. Various types of studies can provide evidence to identify MDAs, yet a systematic method is needed to integrate these data to help to identify such hazards.
View Article and Find Full Text PDFBackground: Among the crises engulfing the world is the symbiotic rise of ultra-processed foods (UPFs) and plastics. Together, this co-dependent duo generates substantial profits for agri-food and petrochemical industries at high costs for people and planet. Cheap, lightweight and highly functional, plastics have ideal properties that enable business models to create demand for low-cost, mass-produced and hyper-palatable UPFs among populations worldwide, hungry, or not.
View Article and Find Full Text PDFWe introduce a general framework for many-body force fields, the Completely Multipolar Model (CMM), that utilizes multipolar electrical moments modulated by exponential decay of electron density as a common functional form for all terms of an energy decomposition analysis of intermolecular interactions. With this common functional form, the CMM model establishes well-formulated damped tensors that reach the correct asymptotes at both long- and short-range while formally ensuring no short-range catastrophes. CMM describes the separable EDA terms of dispersion, exchange polarization, and Pauli repulsion with short-ranged anisotropy, polarization as intramolecular charge fluctuations and induced dipoles, while charge transfer describes explicit movement of charge between molecules, and naturally describes many-body charge transfer by coupling into the polarization equations.
View Article and Find Full Text PDFWater is often the testing ground for new, advanced force fields. While advanced functional forms for intermolecular interactions have been integral to the development of accurate water models, less attention has been paid to a transferable model for intramolecular valence terms. In this work, we present a one-body energy and dipole moment surface model, named 1B-UCB, that is simple yet accurate and can be feasibly adapted for both standard and advanced potentials.
View Article and Find Full Text PDFIn charged water microdroplets, which occur in nature or in the lab upon ultrasonication or in electrospray processes, the thermodynamics for reactive chemistry can be dramatically altered relative to the bulk phase. Here, we provide a theoretical basis for the observation of accelerated chemistry by simulating water droplets of increasing charge imbalance to create redox agents such as hydroxyl and hydrogen radicals and solvated electrons. We compute the hydration enthalpy of OH and H that controls the electron transfer process, and the corresponding changes in vertical ionization energy and vertical electron affinity of the ions, to create OH and H reactive species.
View Article and Find Full Text PDF