Publications by authors named "J J Gervacio-Arciniega"

This work presents the effect of Polyhydroxybutyrate nanospheres (PHB-NSs) on the bacterial activity of plasmonic nanoparticles (NPs). The PHB-NSs were used as a substrate for the metal-NPs. Silver and gold NPs in colloidal solution were synthesized by chemical reduction, while PHB-NSs were synthesized by a physical method.

View Article and Find Full Text PDF

The escalating crisis of nanoplastic pollution in water and food products demands the development of novel methodologies for detection and recycling. Despite various techniques available, surface-enhanced Raman scattering (SERS) is emerging as a highly efficient technique for the trace detection of micro/nanoplastics. However, the development of highly reproducible and stable, flexible SERS substrates that can be used for sensitive detection in environmental medium remains a challenge.

View Article and Find Full Text PDF

Nanoplastics pollution has led to a severe environmental crisis because of a large accumulation of these smaller nanoplastic particles in the aquatic environment and atmospheric conditions. Detection of these nanoplastics is crucial for food safety monitoring and human health. In this work, we report a simple and eco-friendly method to prepare a SERS-substrate-based nanoporous Ag nanoparticle (NP) film through vacuum thermal evaporation onto a vacuum-compatible deep eutectic solvent (DES) coated growth substrate for quantitative detection of nanoplastics in environmental samples.

View Article and Find Full Text PDF

Atomic force microscopy (AFM) is a technique that relies on detecting forces at the nanonewton scale. It involves using a cantilever with a tiny tip at one end. This tip interacts with the short- and long-range forces of material surfaces.

View Article and Find Full Text PDF

Nanoplastic particles are emerging as an important class of environmental pollutants in the atmosphere that have adverse effects on our ecosystems and human health. While many methods have been developed to quantitatively detect nanoplastics; however, sensitive detection at low concentrations in a complex environment remains elusive. Herein, we demonstrate a greener method to fabricate a surface-enhanced Raman spectroscopy (SERS) substrate consisting of self-assembled plasmonic Ag-Au bimetallic nanoparticle (NP) films for quantitative SERS detection of nanoplastics in complex media.

View Article and Find Full Text PDF