Publications by authors named "J J Eller"

An abnormal connection between the carotid artery and cavernous sinus is referred to as a carotid cavernous fistula (CCF). A direct CCF results when the connection occurs between the intracranial internal carotid artery (ICA) and the cavernous sinus. These events are typically the result of a head injury, but can also be iatrogenic, resulting from various intracranial procedures.

View Article and Find Full Text PDF

Polymer electrolyte fuel cells are an essential technology for future local emission-free mobility. One of the critical challenges for thriving commercialization is water management in the cells. We propose small- and wide-angle X-ray scattering as a suitable diagnostic tool to quantify the liquid saturation in the catalyst layer and determine the hydration of the ion-conducting membrane in real operating conditions.

View Article and Find Full Text PDF

We critically assess the capabilities of classical density functional theory (DFT) based on the perturbed-chain statistical associating fluid theory (PC-SAFT) equation of state to predict the solvation free energies of small molecules in various hydrocarbon solvents. We compare DFT results with experimental data from the Minnesota solvation database and utilize statistical methods to analyze the accuracy of our approach, as well as its weaknesses. The mean absolute error of the solvation free energies is 3.

View Article and Find Full Text PDF

Product water transport the microporous layer (MPL) and gas diffusion layer (GDL) substrate during polymer electrolyte fuel cell (PEFC) operation was directly and quantitatively observed by X-ray tomographic microscopy (XTM). The liquid water distribution in two types of MPLs with different pore size distributions (PSDs) was characterized as a function of the inlet gas relative humidity (RH) and current density under humid operating conditions at 45 °C. During the first minute of PEFC operation, liquid water mainly accumulated at the catalyst layer (CL)/MPL interface and in the GDL substrate close to the flow fields.

View Article and Find Full Text PDF

The complex nature of liquid water saturation of polymer electrolyte fuel cell (PEFC) catalyst layers (CLs) greatly affects the device performance. To investigate this problem, we present a method to quantify the presence of liquid water in a PEFC CL using small-angle X-ray scattering (SAXS). This method leverages the differences in electron densities between the solid catalyst matrix and the liquid water filled pores of the CL under both dry and wet conditions.

View Article and Find Full Text PDF