Publications by authors named "J J Dalcanton"

The physics of star formation and the deposition of mass, momentum and energy into the interstellar medium by massive stars ('feedback') are the main uncertainties in modern cosmological simulations of galaxy formation and evolution. These processes determine the properties of galaxies but are poorly understood on the scale of individual giant molecular clouds (less than 100 parsecs), which are resolved in modern galaxy formation simulations. The key question is why the timescale for depleting molecular gas through star formation in galaxies (about 2 billion years) exceeds the cloud dynamical timescale by two orders of magnitude.

View Article and Find Full Text PDF

After several decades of planning, the Hubble Space Telescope (HST) was launched in 1990 as the first of NASA's Great Observatories. After a rocky start arising from an error in the fabrication of its main mirror, it went on to change forever many fields of astronomy, and to capture the public's imagination with its images. An ongoing programme of servicing missions has kept the telescope on the cutting edge of astronomical research.

View Article and Find Full Text PDF

Galaxies are complex systems the evolution of which apparently results from the interplay of dynamics, star formation, chemical enrichment and feedback from supernova explosions and supermassive black holes. The hierarchical theory of galaxy formation holds that galaxies are assembled from smaller pieces, through numerous mergers of cold dark matter. The properties of an individual galaxy should be controlled by six independent parameters including mass, angular momentum, baryon fraction, age and size, as well as by the accidents of its recent haphazard merger history.

View Article and Find Full Text PDF

We applied diffusion-sensitive echo planar (Instascan) imaging to study thermal changes caused by a Nd:YAG laser. Images of phantom materials and normal rabbit brain tissue in vivo, acquired in 150 ms, every 2s, clearly showed the dynamics of temperature-related signal intensity changes in the regions irradiated by the laser.

View Article and Find Full Text PDF