Publications by authors named "J J Cooper-White"

Valproic acid (VPA) is an effective and widely used anti-seizure medication but is teratogenic when used during pregnancy, affecting brain and spinal cord development for reasons that remain largely unclear. Here we designed a genetic recombinase-based SOX10 reporter system in human pluripotent stem cells that enables tracking and lineage tracing of Neural Crest cells (NCCs) in a human organoid model of the developing neural tube. We found that VPA induces extensive cellular senescence and promotes mesenchymal differentiation of human NCCs.

View Article and Find Full Text PDF

The treatment of critical-sized bone defects caused by tumor removal, skeletal injuries, or infections continues to pose a major clinical challenge. A popular potential alternative solution to autologous bone grafts is a tissue-engineered approach that utilizes the combination of mesenchymal stromal/stem cells (MSCs) with synthetic biomaterial scaffolds. This approach aims to support new bone formation by mimicking many of the biochemical and biophysical cues present within native bone.

View Article and Find Full Text PDF

Why individuals with Down syndrome (DS) are more susceptible to SARS-CoV-2-induced neuropathology remains elusive. Choroid plexus (ChP) plays critical roles in barrier function and immune response modulation and expresses the ACE2 receptor and the chromosome 21-encoded TMPRSS2 protease, suggesting its substantial role in establishing SARS-CoV-2 infection in the brain. To explore this, we established brain organoids from DS and isogenic euploid iPSC that consist of a core of functional cortical neurons surrounded by a functional ChP-like epithelium (ChPCOs).

View Article and Find Full Text PDF

Human cell reprogramming traditionally involves time-intensive, multistage, costly tissue culture polystyrene-based cell culture practices that ultimately produce low numbers of reprogrammed cells of variable quality. Previous studies have shown that very soft 2- and 3-dimensional hydrogel substrates/matrices (of stiffnesses ≤ 1 kPa) can drive ~2× improvements in human cell reprogramming outcomes. Unfortunately, these similarly complex multistage protocols lack intrinsic scalability, and, furthermore, the associated underlying molecular mechanisms remain to be fully elucidated, limiting the potential to further maximize reprogramming outcomes.

View Article and Find Full Text PDF

The human body is made up of approximately 40 trillion cells in close contact, with the cellular density of individual tissues varying from 1 million to 1 billion cells per cubic centimetre. Interactions between different cell types (termed heterotypic) are thus common . Communication between cells can take the form of direct cell-cell contact mediated by plasma membrane proteins or through paracrine signalling mediated through the release, diffusion, and receipt of soluble factors.

View Article and Find Full Text PDF