Publications by authors named "J J Clary"

Rates of type 2 diabetes (T2D) continue to rise in the United States, with many patients failing to achieve glycemic targets. Primary care providers often serve as the sole clinician managing diabetes. Continuous glucose monitors (CGMs) have shown promise in diabetes management, yet their adoption in primary care settings, especially among patients with T2D not using intensive insulin therapy, remains limited.

View Article and Find Full Text PDF

Developing theoretical understanding of complex reactions and processes at interfaces requires using methods that go beyond semilocal density functional theory to accurately describe the interactions between solvent, reactants and substrates. Methods based on many-body perturbation theory, such as the random phase approximation (RPA), have previously been limited due to their computational complexity. However, this is now a surmountable barrier due to the advances in computational power available, in particular through modern GPU-based supercomputers.

View Article and Find Full Text PDF

Electrochemical CO reduction (COR) to formate is an attractive carbon emissions mitigation strategy due to the existing market and attractive price for formic acid. Tin is an effective electrocatalyst for COR to formate, but the underlying reaction mechanism and whether the active phase of tin is metallic or oxidized during reduction is openly debated. In this report, we used grand-canonical density functional theory and attenuated total reflection surface-enhanced infrared absorption spectroscopy to identify differences in the vibrational signatures of surface species during COR on fully metallic and oxidized tin surfaces.

View Article and Find Full Text PDF

The complex interplay between local chemistry, the solvent microenvironment, and electrified interfaces frequently present in electrocatalytic reactions has motivated the development of quantum chemical methods that can accurately model these effects. Here, we predict the thermodynamics of the nitrogen reduction reaction (NRR) at sulfur vacancies in 1T'-phase MoS and highlight how the realistic treatment of potential within grand canonical density functional theory (GC-DFT) seamlessly captures the multiple competing effects of applied potential on a catalyst interface interacting with solvated molecules. In the canonical approach, the computational hydrogen electrode is widely used and predicts that adsorbed N structure properties are potential-independent.

View Article and Find Full Text PDF
Article Synopsis
  • G3BP1 and G3BP2 are proteins that help form stress granules in cells during stress, like viral infections, but SARS-CoV-2's nucleocapsid (N) protein stops this process.
  • The study identifies a specific mutation (N-F17A) in the N protein that prevents its interaction with G3BP1/2, leading to an inability to inhibit stress granule formation.
  • This disruption results in lower viral replication and reduced illness in experimental models, showing that the G3BP1-N interaction is crucial for SARS-CoV-2’s ability to replicate and cause disease.
View Article and Find Full Text PDF