Ther Adv Rare Dis
October 2024
Here, we describe two congenitally deaf male siblings with the same compound heterozygotic, likely pathogenic mutations in the FGF3 gene, associated with the labyrinthine aplasia, microtia and microdontia (LAMM) syndrome. Both children had bilateral cochleovestibular aplasia, precluding cochlear implantation. The elder brother received an auditory brainstem implant (ABI) with very limited auditory responses.
View Article and Find Full Text PDFObjectives: We investigated whether listening effort is dependent on task difficulty for cochlear implant (CI) users when using the Matrix speech-in-noise test. To this end, we measured peak pupil dilation (PPD) at a wide range of signal to noise ratios (SNR) by systematically changing the noise level at a constant speech level, and vice versa.
Design: A group of mostly elderly CI users performed the Dutch/Flemish Matrix test in quiet and in multitalker babble at different SNRs.
This study introduces and evaluates the PHAST+ model, part of a computational framework designed to simulate the behavior of auditory nerve fibers in response to the electrical stimulation from a cochlear implant. PHAST+ incorporates a highly efficient method for calculating accommodation and adaptation, making it particularly suited for simulations over extended stimulus durations. The proposed method uses a leaky integrator inspired by classic biophysical nerve models.
View Article and Find Full Text PDFIntroduction: Cochlear implantation is the standard treatment for severe to profound hearing loss. While cochlear implant (CI) users can communicate effectively in quiet environments, speech understanding in noise remains challenging. Bimodal hearing, combining a CI in one ear and a hearing aid (HA) in the other, has shown advantages over unilateral electrical hearing, especially for speech understanding in noisy conditions.
View Article and Find Full Text PDF