The properties of correlated electron materials are often intricately linked to Van Hove singularities (VHS) in the vicinity of the Fermi energy. The class of these VHS is of great importance, with higher-order ones-with power-law divergence in the density of states-leaving frequently distinct signatures in physical properties. We use a new theoretical method to detect and analyse higher-order VHS (HOVHS) in two-dimensional materials and apply it to the electronic structure of the surface layer of SrRuO.
View Article and Find Full Text PDFA wide variety of complex phases in quantum materials are driven by electron-electron interactions, which are enhanced through density of states peaks. A well-known example occurs at van Hove singularities where the Fermi surface undergoes a topological transition. Here we show that higher order singularities, where multiple disconnected leaves of Fermi surface touch all at once, naturally occur at points of high symmetry in the Brillouin zone.
View Article and Find Full Text PDFIn ferromagnetic superconductors, like URhGe, superconductivity coexists with magnetism near zero field, but then reappears in a finite field range, where the system also displays mass enhancement in the normal state. We present the theoretical understanding of this nonmonotonic behavior. We explore the multiband nature of URhGe and associate reentrant superconductivity and mass enhancement with the topological transition (Lifshitz) in one of the bands in a finite magnetic field.
View Article and Find Full Text PDFWe analyze the temperature and doping dependence of the specific heat C(T) in Na(x)CoO(2). This material was conjectured to undergo a Lifshitz-type topological transition at x=x(c)=0.62, in which a new electron Fermi pocket emerges at the Γ point, in addition to the existing hole pocket with large k(F).
View Article and Find Full Text PDFIn the majority of magnetic systems the surface is required to order at the same temperature as the bulk. In the present Letter, we report a distinct and unexpected surface magnetic phase transition at a lower temperature than the Néel temperature. Employing grazing incidence x-ray resonant magnetic scattering, we have observed the near-surface behavior of uranium dioxide.
View Article and Find Full Text PDF