Publications by authors named "J J Balise"

A-kinase anchoring protein AKAP95 is implicated in somatic mitotic chromosome condensation by recruiting the condensin complex. Here, we report a differential regulation of condensation of maternal and paternal chromosomes mediated by AKAP95 in mitotic mouse zygotes. AKAP95 is synthesized upon oocyte activation, targeted to the female pronucleus and specifically associates with maternal chromosomes at mitosis.

View Article and Find Full Text PDF

In this study we evaluated nuclear and ooplasmic maturation of prepuberal calf oocytes to determine a possible cause for their low developmental competency. Calf oocytes resumed meiosis and arrested at the MII stage at rates similar to that of adult animals; however, zygotes derived from calf oocytes cleaved and developed at significantly lower rates. Ooplasmic maturation was assessed during oocyte maturation and fertilization.

View Article and Find Full Text PDF

Sperm-induced calcium (Ca2+) changes were examined in zona pellucida-intact, mature bovine eggs injected with the fluorescent Ca2+ indicator fura-2 dextran (fura-2 D). Fifty four percent (37/68) of the dye-injected, inseminated bovine eggs were fertilized and 43% (16/37) of the fertilized eggs exhibited Ca2+ elevations during the time of measurement. All (16/16) of the eggs with Ca2+ elevations were fertilized but none of the unfertilized eggs (0/31) showed intracellular Ca2+ elevations.

View Article and Find Full Text PDF

We evaluated the influence of the stage of the cell cycle of the donor nucleus on development in vitro of nuclear transplant rabbit embryos. The developmental potential of nuclei in early, mid-, and late stages of the cell cycle was determined. Duration of the G1 phase in early embryos was determined, and a procedure for reversibly synchronizing donor embryos in the G1 phase was developed.

View Article and Find Full Text PDF

Activation of the oocyte is the least efficient step in nuclear transplantation in the rabbit. We report the influence of age of oocytes, field strength, pulse duration and number, and shape of field on the rate of activation of mouse oocytes by electrical pulses. Regardless of oocyte age, activation rates were similar over a wide range of field strengths and pulse durations.

View Article and Find Full Text PDF