Publications by authors named "J Ilarregui"

Background: Multiple sclerosis (MS) involves a misdirected immune attack against myelin in the brain and spinal cord, leading to profound neuroinflammation and neurodegeneration. While the mechanisms of disease pathogenesis have been widely studied, the suppression mechanisms that lead to the resolution of the autoimmune response are still poorly understood. Here, we investigated the role of the C-type lectin receptor macrophage galactose-type lectin (MGL), usually expressed on tolerogenic antigen-presenting cells (APCs), as a negative regulator of autoimmune-driven neuroinflammation.

View Article and Find Full Text PDF

Interleukin (IL)-1β has proven to be crucial in the differentiation of human and mouse Th17 cells. Although it has become evident that IL-1β has potent IL-17-inducing effects on CD4 T cells directly, it has not yet been explored whether IL-1β can also prime dendritic cells (DCs) for a Th17 instruction program. Here, we show that human immature DCs exposed to IL-1β promote IL-17 production in human memory CD4 T cells.

View Article and Find Full Text PDF

Sialic acids are negatively charged nine-carbon carboxylated monosaccharides that often cap glycans on glycosylated proteins and lipids. Because of their strategic location at the cell surface, sialic acids contribute to interactions that are critical for immune homeostasis via interactions with sialic acid-binding Ig-type lectins (siglecs). In particular, these interactions may be of importance in cases where sialic acids may be overexpressed, such as on certain pathogens and tumors.

View Article and Find Full Text PDF

Galectin-1 (Gal-1), an endogenous glycan-binding protein, is widely distributed at sites of inflammation and microbial invasion. Despite considerable progress regarding the immunoregulatory activity of this lectin, the role of endogenous Gal-1 during acute parasite infections is uncertain. In this study, we show that Gal-1 functions as a negative regulator to limit host-protective immunity following intradermal infection with Trypanosoma cruzi.

View Article and Find Full Text PDF

Based on their ability to balance tolerance and inflammation, antigen presenting cells, such as dendritic cells and macrophages contribute to the maintenance of immune homeostasis as well as the instigation of immune activation. Acting as key sensors of tissue integrity and pathogen invasion, they are well equipped with a wide variety of pattern recognition receptors, to which the C-type lectin family also belongs. C-type lectins are glycan-binding receptors that mediate cell-cell communication and pathogen recognition, besides participating in the endocytosis of antigens for presentation to T cells and the fine-tuning of immune responses.

View Article and Find Full Text PDF