Monte Carlo (MC) simulations are commonly used to model the emission, transmission, and/or detection of radiation in Positron Emission Tomography (PET). In this work, we introduce a new open-source MC software for PET simulation, MCGPU-PET, which has been designed to fully exploit the computing capabilities of modern GPUs to simulate the acquisition of more than 100 million coincidences per second from voxelized sources and material distributions. The new simulator is an extension of the PENELOPE-based MCGPU code previously used in cone-beam CT and mammography applications.
View Article and Find Full Text PDFBiomed Phys Eng Express
October 2023
Among other factors such as random, attenuation and scatter corrections, uniform spatial resolution is key to performing accurate quantitative studies in Positron emission tomography (PET). Particularly in preclinical PET studies involving simultaneous acquisition of multiple animals, the degradation of image resolution due to the depth of interaction (DOI) effect far from the center of the Field of View (FOV) becomes a significant concern. In this work, we incorporated a spatially-variant resolution model into a real time iterative reconstruction code to obtain accurate images of multi-animal acquisition.
View Article and Find Full Text PDFNon-alcoholic fatty liver disease (NAFLD) is an umbrella term referring to a group of conditions associated to fat deposition and damage of liver tissue. Early detection of fat accumulation is essential to avoid progression of NAFLD to serious pathological stages such as liver cirrhosis and hepatocellular carcinoma. We exploited the unique capabilities of transmission-reflection optoacoustic ultrasound (TROPUS), which combines the advantages of optical and acoustic contrasts, for an early-stage multi-parametric assessment of NAFLD in mice.
View Article and Find Full Text PDFIn conventional positron emission tomography (PET), only one radiotracer can be imaged at a time, because all PET isotopes produce the same two 511 keV annihilation photons. Here we describe an image reconstruction method for the simultaneous in vivo imaging of two PET tracers and thereby the independent quantification of two molecular signals. This method of multiplexed PET imaging leverages the 350-700 keV range to maximize the capture of 511 keV annihilation photons and prompt γ-ray emission in the same energy window, hence eliminating the need for energy discrimination during reconstruction or for signal separation beforehand.
View Article and Find Full Text PDFThe standard assessment of response to cancer treatments is based on gross tumor characteristics, such as tumor size or glycolysis, which provide very indirect information about the effect of precision treatments on the pharmacological targets of tumors. Several advanced imaging modalities allow for the visualization of targeted tumor hallmarks. Descriptors extracted from these images can help establishing new classifications of precision treatment response.
View Article and Find Full Text PDF