Publications by authors named "J Humm"

Background: Prior to selective internal radiotherapy of liver tumors, a determination of the lung shunt fraction (LSF) is performed using 99mTc- macroaggregated albumin (99mTc-MAA) injected into the hepatic artery. Most commonly planar but sometimes SPECT/CT images are acquired upon which regions of interests are drawn manually to define the liver and the lung. The LSF is then calculated by taking the count ratios between these two organs.

View Article and Find Full Text PDF

Background: The small molecule radiotracer I-PU-H71 is an imaging biomarker of epichaperome formation. The tracer has been established to localize in tissues under chronic stress, specifically in cancer cells and neurodegenerative brain cells. A first-in-human imaging trial using positron emission tomography (PET) in cancer patients revealed unexpected tracer accumulation in the myocardium.

View Article and Find Full Text PDF

Objective: In frontal crashes belt-positioning boosters (BPB) may prevent submarining when the seatback is reclined. It is unclear if the BPB can also mitigate injuries in far-side lateral-oblique crashes in reclined conditions, where current restraints are less effective in reducing lateral excursion. This study aimed to understand reclined child injury risk during lateral-oblique impacts, with and without a booster seat, by using the Large Omni-Directional Child (LODC) test device.

View Article and Find Full Text PDF

Importance: Given high rates of locoregional control after definitive management of head and neck squamous cell carcinoma (HNSCC), better methods are needed to project distant metastasis (DM) risk. Tumor hypoxia on 18F-fluoromisonidazole (FMISO) positron emission tomography (PET) is associated with locoregional failure, but data demonstrating an association with DM are limited.

Objective: To determine whether tumor hypoxia on FMISO PET is associated with DM risk after chemoradiotherapy (CRT) for HNSCC.

View Article and Find Full Text PDF

Tumor hypoxia, an integral biomarker to guide radiotherapy, can be imaged with F-fluoromisonidazole (F-FMISO) hypoxia PET. One major obstacle to its broader application is the lack of standardized interpretation criteria. We sought to develop and validate practical interpretation criteria and a dedicated training protocol for nuclear medicine physicians to interpret F-FMISO hypoxia PET.

View Article and Find Full Text PDF