Publications by authors named "J Huizenga"

The increase in production and innovation of chemicals that humans interface with has enhanced the need for rapid toxicity testing of new and existing chemicals. This need, along with efforts to reduce animal testing, has led to the development of high-throughput bioassays typically conducted in microplates. These bioassays offer time and resource advantages over traditional animal models; however, significant chemical losses can occur in microplates.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) are prevalent environmental contaminants that are harmful to ecological and human health. Bioremediation is a promising technique for remediating PAHs in the environment, however bioremediation often results in the accumulation of toxic PAH metabolites. The objectives of this research were to demonstrate the cometabolic treatment of a mixture of PAHs by a pure bacterial culture, Rhodococcus rhodochrous ATCC 21198, and investigate PAH metabolites and toxicity.

View Article and Find Full Text PDF

Objectives: Research on what matters most to people with dementia is crucial for developing tailored interventions and support. This study explored how people with dementia experience their everyday lives, providing insight into what is important to them to live the best they can at home.

Methods: Inspired by a phenomenological approach, open interviews were conducted with 15 people with dementia, supplemented by home tours and walking interviews.

View Article and Find Full Text PDF

The degradation of the prevalent environmental contaminants benzene, toluene, ethylbenzene, and xylenes (BTEX) along with a common co-contaminant methyl tert-butyl ether (MTBE) by Rhodococcus rhodochrous ATCC Strain 21198 was investigated. The ability of 21198 to degrade these contaminants individually and in mixtures was evaluated with resting cells grown on isobutane, 1-butanol, and 2-butanol. Growth of 21198 in the presence of BTEX and MTBE was also studied to determine the growth substrate that best supports simultaneous microbial growth and contaminants degradation.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) are a class of environmental contaminants released into the environment from both natural and anthropogenic sources that are associated with carcinogenic, mutagenic, and teratogenic health effects. Many remediation strategies for the treatment of PAH contaminated material, including bioremediation, can lead to the formation of toxic transformation products. Analytical techniques for PAHs and PAH transformation products often require extensive sample preparation including solvent extraction and concentration, chromatographic separation, and mass spectrometry to identify and quantify compounds of interest.

View Article and Find Full Text PDF