The ultrafast and ultracold electron source, based on laser cooling and trapping of atomic gas and its subsequent near-threshold two-step photoionization, is capable of generating electron bunches with a high transverse brightness at energies of roughly 10 keV. This paper investigates the possibility of increasing the range of applications of this source by accelerating the bunch using radio frequency electromagnetic fields. Bunch energies up to 35 keV are measured by analyzing the diffraction patterns generated from a mono-crystalline gold sample.
View Article and Find Full Text PDFShocks in supersonic flows offer both high density and sharp density gradients that are used, for instance, for gradient injection in laser-plasma accelerators. We report on a parametric study of oblique shocks created by inserting a straight axisymmetric section at the end of a supersonic "de Laval" nozzle. The effect of different parameters, such as the throat diameter and straight section length on the shock position and density, is studied through computational fluid dynamics (CFD) simulations.
View Article and Find Full Text PDFCompact, tunable, radially symmetric focusing of electrons is critical to laser-plasma accelerator (LPA) applications. Experiments are presented demonstrating the use of a discharge-capillary active plasma lens to focus 100-MeV-level LPA beams. The lens can provide tunable field gradients in excess of 3000 T/m, enabling cm-scale focal lengths for GeV-level beam energies and allowing LPA-based electron beams and light sources to maintain their compact footprint.
View Article and Find Full Text PDFSingle-molecule force-spectroscopy methods such as magnetic and optical tweezers have emerged as powerful tools for the detailed study of biomechanical aspects of DNA-enzyme interactions. As typically only a single molecule of DNA is addressed in an individual experiment, these methods suffer from a low data throughput. Here, we report a novel method for targeted, nonrandom immobilization of DNA-tethered magnetic beads in regular arrays through microcontact printing of DNA end-binding labels.
View Article and Find Full Text PDF