Publications by authors named "J Hsieh"

Objectives: Our understanding of elder abuse (EA) phenomena has largely been shaped from the perspective of researchers and professionals whose conceptualizations often differ from the perceptions of older adults who experience mistreatment. This study sought to understand the most distressing aspects of EA victimization from the perspective of survivors.

Methods: Using a descriptive phenomenological approach, individual interviews were conducted with a diverse sample ( = 32) of EA survivors, recruited from EA support and Adult Protective Services programs in New York City and Los Angeles.

View Article and Find Full Text PDF

Objective: Non-invasive electroencephalograms (EEG)-based brain-computer interfaces (BCIs) play a crucial role in a diverse range of applications, including motor rehabilitation, assistive and communication technologies, benefiting users across various clinical spectrums. Effective integration of these applications into daily life requires systems that provide stable and reliable BCI control for extended periods. Our prior research introduced the AIRTrode, a self-adhesive (A), injectable (I), and room-temperature (RT) spontaneously-crosslinked hydrogel electrode (AIRTrode).

View Article and Find Full Text PDF

The integration of wearable neural interfaces (WNIs) with the human nervous system has marked a significant progression, enabling progress in medical treatments and technology integration. Hydrogels, distinguished by their high-water content, low interfacial impedance, conductivity, adhesion, and mechanical compliance, effectively address the rigidity and biocompatibility issues common in traditional materials. This review highlights their important parameters-biocompatibility, interfacial impedance, conductivity, and adhesiveness-that are integral to their function in WNIs.

View Article and Find Full Text PDF

We develop a new all-dielectric metasurface for designing high quality-factor (-factor) quasi-bound states in the continuum (quasi-BICs) using asymmetry kite-shaped nanopillar arrays. The -factors of quasi-BICs follow the quadratic dependence on the geometry asymmetry, and meanwhile their resonant spectral profiles can be readily tuned between Fano and Lorentzian lineshapes through the interplay with the broadband magnetic dipole mode. The third-harmonic signals of quasi-BIC modes exhibit a gain from 43.

View Article and Find Full Text PDF