Publications by authors named "J Houplin"

Water molecules were used to probe the physical and chemical properties of a model hydrophilic organic organized layer. To this end, HO adsorption on mercaptoundecanoic acid self-assembled monolayers (SAMs) was investigated at the molecular level under ultra-high vacuum by high resolution electron energy loss spectroscopy (HREELS), through the sensitivity of the water OH stretching modes to the molecular environment. The water interfacial layer formation and structure were studied upon deposition at 28 K.

View Article and Find Full Text PDF

Aromatic self-assembled monolayers (SAMs) can serve as platforms for development of supramolecular assemblies driven by surface templates. For many applications, electron processing is used to locally reinforce the layer. To achieve better control of the irradiation step, chemical transformations induced by electron impact at 50 eV of terphenylthiol SAMs are studied, with these SAMs serving as model aromatic SAMs.

View Article and Find Full Text PDF

Low energy electron scattering on terphenylthiol (TPT, HS-(C6H4)2-C6H5) self-assembled monolayers (SAMs) deposited onto gold was investigated using high resolution electron energy loss spectroscopy (HREELS) by recording specular elastic and inelastic excitation functions. The electron elastic reflectivity could be directly compared to the sample density-of-states (DOS) above vacuum level. A high reflectivity region was observed in the range 7.

View Article and Find Full Text PDF

Aromatic self-assembled monolayers (SAMs) can be used as negative tone electron resists in functional surface lithographic fabrication. A dense and resistant molecular network is obtained under electron irradiation through the formation of a cross-linked network. The elementary processes and possible mechanisms involved were investigated through the response of a model aromatic SAM, p-terphenylthiol SAM, to low-energy electron (0-10 eV) irradiation.

View Article and Find Full Text PDF

Low-energy electron induced degradation of a model self-assembled monolayer (SAM) of acid terminated alkanethiol was studied under ultra-high vacuum (UHV) conditions at room and low (~40 K) temperatures. Low-energy electron induced chemical modifications of 11-mercaptoundecanoic acid (MUA, HS-(CH2)10-COOH) SAMs deposited on gold were probed in situ as a function of the irradiation energy (<11 eV) by combining two complementary techniques: High Resolution Electron Energy Loss Spectroscopy (HREELS), a surface sensitive vibrational spectroscopy technique, and Electron Stimulated Desorption (ESD) analysis of neutral fragments. The SAM's terminal functions were observed to be selectively damaged at around 1 eV by a resonant electron attachment mechanism, observed to decay by CO, CO2 and H2O formation and desorption.

View Article and Find Full Text PDF