Publications by authors named "J Horecky"

It is known that oxidative stress and mitochondrial dysfunction both play an important role in animal models of brain ischemia. The present study was undertaken to test whether oral supplementation of coenzyme Q10 (ubiquinone) or creatine citrate could protect against brain ischemia-induced mitochondrial damage in the rats model. Brain ischemia was induced for 50 minutes with three-vessel occlusion (3-VO).

View Article and Find Full Text PDF

Brain energy disorders can be present in aged men and animals. To this respect, the mitochondrial and free radical theory of aging postulates that age-associated brain energy disorders are caused by an imbalance between pro- and anti-oxidants that can result in oxidative stress. Our study was designed to investigate brain energy metabolism and the activity of endogenous antioxidants during their lifespan in male Wistar rats.

View Article and Find Full Text PDF

Brain energy disorders and oxidative stress due to chronic hypoperfusion are considered to be major risk factors in the pathogenesis of dementia. The aim of our study was to evaluate changes of the brain creatine kinase (BB-CK) reaction and mitochondrial respiratory chain function in male Wistar rats exposed to chronic cerebral hypoperfusion. Three-vessel occlusion (3-VO) was accomplished without thoracotomy using a minimally-invasive surgical approach for the occlusion of the brachiocephalic trunk and the left common carotid artery (CCA).

View Article and Find Full Text PDF

Creatine kinase (CK) plays a central role in energy transfer in cells with high-energy demands, and the enzyme is rather susceptible to oxidative inactivation. The aim of the present study was to investigate whether the rate constant of forward CK reaction (k(for)) is a suitable indicator of alterations in cerebral energy metabolism. We monitored k(for) in the rat brain non-invasively by in vivo phosphorus ((31)P) magnetic resonance spectroscopy (MRS).

View Article and Find Full Text PDF

A multiple analysis of the cerebral oxidative stress was performed on a physiological model of dementia accomplished by three-vessel occlusion in aged rats. The forward rate constant of creatine kinase, k(for), was studied by saturation transfer (31)P magnetic resonance spectroscopy in adult and aged rat brain during chronic hypoperfusion. In addition, free radicals in aging rat brain homogenates before and/or after occlusion were investigated by spin-trapping electron paramagnetic resonance spectroscopy (EPR).

View Article and Find Full Text PDF