Defects in wide bandgap materials have emerged as promising candidates for solid-state quantum optical technologies. Electrical excitation of single emitters may lead to scalable on-chip devices and therefore is highly sought after. However, most wide bandgap materials are not amenable to efficient doping, posing challenges for electrical excitation and on-chip integration.
View Article and Find Full Text PDFBackground: Understanding the role of adherence to home exercise programs for survivors of stroke is critical to ensure patients perform prescribed exercises and maximize effectiveness of recovery.
Methods: Survivors of hemiparetic stroke with impaired motor function were recruited into a 7-day study designed to test the utility and usability of a low-cost wearable system and progressive-challenge cued exercise program for encouraging graded-challenge exercise at-home. The wearable system comprised two wrist-worn MetaMotionR+ activity monitors and a custom smartphone app.
Quantum light sources are essential building blocks for many quantum technologies, enabling secure communication, powerful computing, and precise sensing and imaging. Recent advancements have witnessed a significant shift toward the utilization of "flat" optics with thickness at subwavelength scales for the development of quantum light sources. This approach offers notable advantages over conventional bulky counterparts, including compactness, scalability, and improved efficiency, along with added functionalities.
View Article and Find Full Text PDFHigh-quality quantum light sources are crucial components for the implementation of practical and reliable quantum technologies. The persistent challenge, however, is the lack of scalable and deterministic single photon sources that can be synthesized reproducibly. Here, we present a combination of droplet epitaxy with selective area epitaxy to realize the deterministic growth of single quantum dots in nanowire arrays.
View Article and Find Full Text PDF