Publications by authors named "J Holec"

The development of functional organic molecules requires structures of increasing size and complexity, which are typically obtained by the covalent coupling of smaller building blocks. Herein, with the aid of high-resolution scanning tunneling microscopy/spectroscopy and density functional theory, the coupling of a sterically demanded pentacene derivative on Au(111) into fused dimers connected by non-benzenoid rings was studied. The diradical character of the products was tuned according to the coupling section.

View Article and Find Full Text PDF

A series of regioisomeric push-pull amino-nitro [6]helicenes and a related [7]helicene derivative were prepared and their racemates resolved into enantiomers. Compared to the parent helicenes, they exhibit red-shifted UV-Vis spectra, pronounced dipole moments, altered chiroptical properties such as remarkable optical rotatory power, and can form nanocrystalline Langmuir-Blodgett films.

View Article and Find Full Text PDF

Oligoacenes are promising materials in the field of electronic devices since they exhibit high charge carrier mobility and more particularly as a semiconductor in thin film transistors. Herein, we investigate the field effect charge carrier mobility of benzohexacene, recently obtained by cheletropic decarbonylation at moderate temperature. Initially, high performance bottom contact organic thin-film transistors (OTFTs) were fabricated using tetracene to validate the fabrication process.

View Article and Find Full Text PDF

During the last years we have witnessed progressive evolution of preparation of acenes with length up to dodecacene by on-surface synthesis in ultra-high vacuum or generation of acenes up to decacene in solid matrices at low temperatures. While these protocols with very specific conditions produce the acenes in amount of few molecules, the strategies leading to the acenes in large quantities dawdle behind. Only recently and after 70 years of synthetic attempts, heptacene has been prepared in bulk phase.

View Article and Find Full Text PDF

Acenes, polyaromatic hydrocarbons composed of linearly fused benzene rings have received immense attention due to their performance as semiconductors in organic optoelectronic applications. Their appealing physicochemical properties, such as extended delocalization, high charge carrier mobilities, narrow HOMO-LOMO gaps and partially radical character in the ground state make them very attractive targets for many potential applications. However, the intrinsic synthetic challenges of unsubstituted members such as high reactivity and poor solubility are still limiting factors for their wider exploitation.

View Article and Find Full Text PDF