Human-caused global change produces biotic and abiotic conditions that increase the uncertainty and risk of failure of restoration efforts. A focus of managing for resiliency, that is, the ability of the system to respond to disturbance, has the potential to reduce this uncertainty and risk. However, identifying what drives resiliency might depend on how one measures it.
View Article and Find Full Text PDFDispersal of reproductive propagules determines recruitment patterns and connectivity among populations and can influence how populations respond to major disturbance events. Dispersal distributions can depend on propagule release strategies. For instance, the bull kelp, , can release propagules (spores) from two heights in the water column ("bimodal release"): at the water surface, directly from the reproductive tissues (sori) on the kelp's blades, and near the seafloor after the sori abscise and sink through the water column.
View Article and Find Full Text PDFThe recent collapse of predatory sunflower sea stars () owing to sea star wasting disease (SSWD) is hypothesized to have contributed to proliferation of sea urchin barrens and losses of kelp forests on the North American west coast. We used experiments and a model to test whether restored populations may help recover kelp forests through their consumption of nutritionally poor purple sea urchins () typical of barrens. consumed 0.
View Article and Find Full Text PDFNitrate is a major nutrient and osmoticum for plants. To deal with fluctuating nitrate availability in soils, plants store this nutrient in their vacuoles. Chloride channel a (CLCa), a 2NO3-/1H+ exchanger localized to the vacuole in Arabidopsis (Arabidopsis thaliana), ensures this storage process.
View Article and Find Full Text PDF