Background: Patients with sepsis-induced AKI can be classified into two distinct sub-phenotypes (AKI-SP1, AKI-SP2) that differ in clinical outcomes and response to treatment. The biologic mechanisms underlying these sub-phenotypes remains unknown. Our objective was to understand the underlying biology that differentiates AKI sub-phenotypes and associations with kidney outcomes.
View Article and Find Full Text PDFThe organizational principles of nephronal segments are based on longstanding anatomical and physiological attributes that are closely linked to the homeostatic functions of the kidney. Novel molecular approaches have recently uncovered layers of deeper signatures and states in tubular cells that arise at various timepoints on the spectrum between health and disease. For example, a dedifferentiated state of proximal tubular cells with mesenchymal stemness markers is frequently seen after injury.
View Article and Find Full Text PDFBackground: Acute kidney injury (AKI) increases the risk for chronic kidney disease (CKD). We aimed to identify combinations of clinical variables and biomarkers that predict long-term kidney disease risk after AKI.
Methods: We analyzed data from a prospective cohort of 723 hospitalized patients with AKI in the Assessment, Serial Evaluation, and Subsequent Sequelae of AKI (ASSESS-AKI) Study.
Introduction: Uremic toxins contributing to increased risk of death remain largely unknown. We used untargeted metabolomics to identify plasma metabolites associated with mortality in patients receiving maintenance hemodialysis.
Methods: We measured metabolites in serum samples from 522 Longitudinal US/Canada Incident Dialysis (LUCID) study participants.