Photosensitizers (PSs) featuring type I reactive oxygen species (ROS) generation and aggregation-induced emission (AIE) activity offer a promising solution to achieve non-invasive and precise theranostics. However, the reported AIE luminogens (AIEgens) with both AIE characteristic and strong type-I ROS generation are still scarce and the structure-property relationship is still unclear. Herein, an innovative acceptor elongation boosted intersystem crossing (AEBIC) design strategy has been proposed to endow the AIEgen strong type-I ROS producibility.
View Article and Find Full Text PDFChemotherapy remains the primary treatment modality for multiple cancer types, but the cytotoxicity of chemotherapeutic drugs often leads to persistent psychological disturbances that undermine daily function. Minimizing such unwanted effects is challenging in the rehabilitation/prehabilitation of cancer survivors, hence the impetus to identify modifiable external factors capable of improving the recovery process. The importance of social stimulation has been demonstrated in a mouse model showing that grouped housing lowered the likelihood of developing mood disturbance following exposure to chemotherapeutic drugs compared with isolated housing.
View Article and Find Full Text PDFSmall interfering RNA (siRNA) and messenger RNA (mRNA) have drawn considerable attention in recent years due to their ability to modulate the expression of specific disease-related proteins. However, it is difficult to find safe, robust, and effective RNA delivery systems suitable for pulmonary delivery to treat lung diseases. In this study, two cationic peptides, namely LAH4-L1 and PEGKL4, were employed as non-viral vectors for siRNA and mRNA delivery.
View Article and Find Full Text PDFBackground: This study investigates the relationships between resilience dimensions, coping strategies, and prior disaster experience, focusing on disaster preparedness and avoidance behaviors in Taiwan.
Methods: A total of 550 participants were surveyed, with 57.82% being female and the majority aged between 21 and 40 years.
Fe-N-C materials are emerging catalysts for replacing precious platinum in the oxygen reduction reaction (ORR) for renewable energy conversion. However, their potential is hindered by sluggish ORR kinetics, leading to a high overpotential and impeding efficient energy conversion. Using iron phthalocyanine (FePc) as a model catalyst, we elucidate how the local strain can enhance the ORR performance of Fe-N-Cs.
View Article and Find Full Text PDF