The forward chemogenomics strategy allowed us to identify a potent cytotoxic thiazolidine compound as an apoptosis-inducing agent. Chemical structures were designed around a thiazolidine ring, a structure already noted for its anticancer properties. Initially, we evaluated these novel compounds on liver, breast, colon and endometrial cancer cell lines.
View Article and Find Full Text PDFNon-viral gene therapy requires innovative strategies to achieve higher transfection efficacy. A few years ago, our group proposed bioinspired lipids whoseinteraction with DNA was not based on ionic interactions, but on hydrogen bonds. We thusdeveloped lipids bearing a thiourea head which allowed an interaction with DNAphosphates through hydrogen bonds.
View Article and Find Full Text PDFThis article deal with the parallel synthesis of a 96 product-sized library using a polymer-based copper catalyst that we developed which can be easily separated from the products by simple filtration. This gave us the opportunity to use this catalyst in an automated chemical synthesis station (Chemspeed ASW-2000). Studies and results about the preparation of the catalyst, its use in different solvent systems, its recycling capabilities and its scope and limitations in the synthesis of this library will be addressed.
View Article and Find Full Text PDFLipopolythioureas (LPT) are original non cationic systems representing an alternative to cationic lipids. Their high transfection efficiency prompted us to investigate further their biophysical properties, and in particular how thiourea lipids interact with DNA. The interaction of lipopolythiourea with DNA was investigated by fluorescence correlation microscopy (FCS).
View Article and Find Full Text PDFBackground: We have previously developed lipopolythiourea lipids as neutral DNA condensing agents for systemic gene delivery. Optimization of the lipopolythiourea structure led to efficient transfecting agents. To further evaluate these lipids, we investigated the internalization process of the thiourea lipoplexes and their intracellular mechanism of transfection versus that of cationic lipoplexes.
View Article and Find Full Text PDF