Isomerization is a key process in many (bio)chemical systems. In microbial rhodopsins, the photoinduced isomerization of the all-trans retinal to the 13-cis isomer initiates a cascade of structural changes of the protein. The interplay between these changes and the thermal relaxation of the isomerized retinal is one of the crucial determinants for rhodopsin functionality.
View Article and Find Full Text PDFLight-oxygen-voltage (LOV) domains are small photosensory flavoprotein modules that allow the conversion of external stimuli (sunlight) into intracellular signals responsible for various cell behaviors (e.g. phototropism and chloroplast relocation).
View Article and Find Full Text PDFThe ability to track minute changes of a single amino acid residue in a cellular environment is causing a paradigm shift in the attempt to fully understand the responses of biomolecules that are highly sensitive to their environment. Detecting early protein dynamics in living cells is crucial to understanding their mechanisms, such as those of photosynthetic proteins. Here, we elucidate the light response of the microbial chloride pump HR from the marine bacterium , located in the membrane of living cells, using nanosecond time-resolved UV/vis and IR absorption spectroscopy over the time range from nanoseconds to seconds.
View Article and Find Full Text PDFGiven the extensive use of fluorination in molecular design, it is imperative to understand the solvation properties of fluorinated compounds and the impact of the C-F bond on electrostatic interactions. Vibrational spectroscopy can provide direct insights into these interactions by using the C-F bond stretching [v(C-F)] as an electric field probe through the vibrational Stark effect (VSE). In this work, we explore the VSE of the three basic patterns of aliphatic fluorination, i.
View Article and Find Full Text PDFThis study utilizes nanoscale Fourier transform infrared spectroscopy (nanoFTIR) to perform stable isotope probing (SIP) on individual bacteria cells cultured in the presence of C-labelled glucose. SIP-nanoFTIR simultaneously quantifies single-cell metabolism through infrared spectroscopy and acquires cellular morphological information via atomic force microscopy. The redshift of the amide I peak corresponds to the isotopic enrichment of newly synthesized proteins.
View Article and Find Full Text PDF