We developed a single-molecule enzyme activity assay platform for NAD(P)-dependent oxidoreductases, leveraging a new NAD(P)H-responsive fluorogenic probe optimized for microdevice-based fluorometric detection. This platform enabled the detection of enzyme activities in blood and cerebrospinal fluid (CSF), including lactate dehydrogenase, glucose-6-phosphate dehydrogenase, and hexokinases. We demonstrate its potential for activity-based diagnosis by detecting altered populations of enzyme activity species in blood and CSF from liver damage in brain tumor patients.
View Article and Find Full Text PDFIntroduction: Nutritional therapy is an important component of intensive care. We investigated the associations of nutritional therapy in the acute phase of severe COVID-19 with the long-term outcomes of post-intensive care syndrome (PICS) and post-COVID-19 conditions.
Methods: A questionnaire on the health status after COVID-19 was sent to patients 1 year after infection and PICS was evaluated.
Skeletal muscle and bone interact to maintain their structure and function. Physical exercise is the most effective and easily applicable strategy to maintain their functions; however, exercise-induced interactions by soluble factors remained elusive. Our study aimed to identify exercise-induced interactions between muscle and bone by examining (1) the effects of myokine on bone and (2) the effects of osteocalcin (OCN) on skeletal muscle.
View Article and Find Full Text PDFBackground: Maintaining intrinsic articular cartilage homeostasis is essential for the health of cartilage. However, the impact of aerobic exercise of varying intensities on the articular cartilage homeostasis has never been studied. This study aims to elucidate the influence of different aerobic exercise intensities on the anabolic and catabolic processes within articular cartilage.
View Article and Find Full Text PDF