Publications by authors named "J Hanzlik"

This research investigates the adaptation of conventional injection-molding techniques for producing thick-walled polycarbonate optical components, specifically targeting their application in automotive light guides. With the automotive industry's growing demand for reliable yet cost-efficient optical products, the study examines how traditional injection-molding processes can be refined to enhance dimensional accuracy and reduce defects. Simulations and experimental trials were conducted to evaluate the impact of critical process parameters, such as melt temperature, mold temperature, injection pressure, and gate design, on the overall quality of the final components.

View Article and Find Full Text PDF

This study investigates the challenges and potential of conventional injection molding for producing thick-walled optical components. The research primarily focuses on optimizing process parameters and mold design to enhance product quality. The methods include software simulations and experimental validation using polycarbonate test samples (optical lenses).

View Article and Find Full Text PDF

Rubber blends based on styrene-butadiene rubber, ethylene-propylene-diene monomer rubber and a combination of both rubbers were cured with different sulfur and peroxide curing systems. In sulfur curing systems, two type of accelerators, namely tetramethylthiuram disulfide, N-cyclohexyl-2-benzothiazole sulfenamide, and combinations of both accelerators were used. In peroxide curing systems, dicumyl peroxide, and a combination of dicumyl peroxide with zinc diacrylate or zinc dimethacrylate, respectively, were applied.

View Article and Find Full Text PDF

Injection molding technology is widely utilized across various industries for its ability to fabricate complex-shaped components with exceptional dimensional accuracy. However, challenges related to injection quality often arise, necessitating innovative approaches for improvement. This study investigates the influence of surface roughness on the efficiency of conformal cooling channels produced using additive manufacturing technologies, specifically Direct Metal Laser Sintering (DMLS) and Atomic Diffusion Additive Manufacturing (ADAM).

View Article and Find Full Text PDF

The modification of polymer materials' useful properties can be applicable in many industrial areas due to the ability to make commodity and technical plastics (plastics that offer many benefits, such as processability, by injection molding) useful in more demanding applications. In the case of injection-molded parts, one of the most suitable methods for modification appears to be high-energy irradiation, which is currently used primarily for the modification of mechanical and thermal properties. However, well-chosen doses can effectively modify the properties of the surface layer as well.

View Article and Find Full Text PDF