As the mining industry is facing an increasing number of issues related to its fresh water consumption, water-saving strategies are progressively being implemented in the mineral processing plants, often leading to variations in the process water chemistry. However, the impact of water chemistry variations on the process performance is rarely known beforehand, thus creating an obstacle to the implementation of those water-saving strategies. To tackle this problem, the effect the different dissolved species present in the process water have on the processing plant performance must be quantified, and this information must be digitalized in a practical and suitable form to be used in mineral processing simulators.
View Article and Find Full Text PDFIn the production of solid recovered fuel (SRF), certain waste components have excessive influence on the quality of product. The proportion of rubber, plastic (hard) and certain textiles was found to be critical as to the elemental quality of SRF. The mass flow of rubber, plastic (hard) and textiles (to certain extent, especially synthetic textile) components from input waste stream into the output streams of SRF production was found to play the decisive role in defining the elemental quality of SRF.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
April 2015
Rationale: Desorption atmospheric pressure photoionization (DAPPI) is an ambient mass spectrometry (MS) technique that is suitable for the direct analysis of polar and nonpolar compounds from a variety of surfaces. Conventional DAPPI uses reflection geometry, but here transmission mode (TM)-DAPPI is introduced for fast and easy analysis of liquid samples.
Methods: Stainless steel and PEEK meshes were used as sampling support in TM-DAPPI.
This is the third and final part of the three-part article written to describe the mass, energy and material balances of the solid recovered fuel production process produced from various types of waste streams through mechanical treatment. This article focused the production of solid recovered fuel from municipal solid waste. The stream of municipal solid waste used here as an input waste material to produce solid recovered fuel is energy waste collected from households of municipality.
View Article and Find Full Text PDFIn this work, the fraction of construction and demolition waste (C&D waste) complicated and economically not feasible to sort out for recycling purposes is used to produce solid recovered fuel (SRF) through mechanical treatment (MT). The paper presents the mass, energy and material balances of this SRF production process. All the process streams (input and output) produced in MT waste sorting plant to produce SRF from C&D waste are sampled and treated according to CEN standard methods for SRF.
View Article and Find Full Text PDF