Background And Aims: Skeletal muscle (SM) fat infiltration, or intermuscular adipose tissue (IMAT), reflects muscle quality and is associated with inflammation, a key determinant in cardiometabolic disease. Coronary flow reserve (CFR), a marker of coronary microvascular dysfunction (CMD), is independently associated with body mass index (BMI), inflammation and risk of heart failure, myocardial infarction, and death. The relationship between SM quality, CMD, and cardiovascular outcomes is not known.
View Article and Find Full Text PDFBackground: Coronary microvascular dysfunction has been implicated in the development of hypertensive heart disease and heart failure, with subendocardial ischemia identified as a driver of sustained myocardial injury and fibrosis. We aimed to evaluate the relationships of subendocardial perfusion with cardiac injury, structure, and a composite of major adverse cardiac and cerebrovascular events consisting of death, heart failure hospitalization, myocardial infarction, and stroke.
Methods: Layer-specific blood flow and myocardial flow reserve (MFR; stress/rest myocardial blood flow) were assessed by N-ammonia perfusion positron emission tomography in consecutive patients with hypertension without flow-limiting coronary artery disease (summed stress score <3) imaged at Brigham and Women's Hospital (Boston, MA) from 2015 to 2021.
Background: The epidemiology of coronary artery disease (CAD) has shifted, with increasing prevalence of cardiometabolic disease and decreasing findings of obstructive CAD on myocardial perfusion imaging (MPI). Coronary microvascular dysfunction (CMD), defined as impaired myocardial flow reserve (MFR) by positron emission tomography (PET), has emerged as a key mediator of risk. We aimed to assess whether PET MFR provides additive value for risk stratification of cardiometabolic disease patients compared with single-photon emission computed tomography (SPECT) MPI.
View Article and Find Full Text PDFBackground: Myocardial flow reserve (MFR) by positron emission tomography (PET) is a validated measure of cardiovascular risk. Elevated resting rate pressure product (RPP = heart rate x systolic blood pressure) can cause high resting myocardial blood flow (MBF), resulting in reduced MFR despite normal/near-normal peak stress MBF. When resting MBF is high, it is not known if RPP-corrected MFR (MFR) helps reclassify CV risk.
View Article and Find Full Text PDF