Publications by authors named "J Haimerl"

The forthcoming generation of materials, including artificial muscles, recyclable and healable systems, photochromic heterogeneous catalysts, or tailorable supercapacitors, relies on the fundamental concept of rapid switching between two or more discrete forms in the solid state. Herein, we report a breakthrough in the "speed limit" of photochromic molecules on the example of sterically-demanding spiropyran derivatives through their integration within solvent-free confined space, allowing for engineering of the photoresponsive moiety environment and tailoring their photoisomerization rates. The presented conceptual approach realized through construction of the spiropyran environment results in ~1000 times switching enhancement even in the solid state compared to its behavior in solution, setting a record in the field of photochromic compounds.

View Article and Find Full Text PDF

Cooperative behavior and orthogonal responses of two classes of coordinatively integrated photochromic molecules towards distinct external stimuli were demonstrated on the first example of a photo-thermo-responsive hierarchical platform. Synergetic and orthogonal responses to temperature and excitation wavelength are achieved by confining the stimuli-responsive moieties within a metal-organic framework (MOF), leading to the preparation of a novel photo-thermo-responsive spiropyran-diarylethene based material. Synergistic behavior of two photoswitches enables the study of stimuli-responsive resonance energy transfer as well as control of the photoinduced charge transfer processes, milestones required to advance optoelectronics development.

View Article and Find Full Text PDF

The advances made in the field of stimuli-responsive catalysis during the last five years with a focus on the novel recently-emerged directions and applications have been surveyed. Metal-free catalysts and organometallic complexes, as well as biomimetic systems and extended structures, which display switchable catalytic activity for a variety of organic transformations, are discussed. Light-activated systems comprised of photochromic molecules capable of modulating reaction rate, yield, or enantioselectivity based on geometric and electronic changes associated with photoisomerization are the focus of the detailed discussion.

View Article and Find Full Text PDF

Cooperative metal-photoswitch interfaces comprise an application-driven field which is based on strategic coupling of metal cations and organic photochromic molecules to advance the behavior of both components, resulting in dynamic molecular and material properties controlled through external stimuli. In this Perspective, we highlight the ways in which metal-photoswitch interplay can be utilized as a tool to modulate a system's physicochemical properties and performance in a variety of structural motifs, including discrete molecular complexes or cages, as well as periodic structures such as metal-organic frameworks. This Perspective starts with photochromic molecular complexes as the smallest subunit in which metal-photoswitch interactions can occur, and progresses toward functional materials.

View Article and Find Full Text PDF

In the effort to generate sustainable clean energy from abundant resources such as water and carbon dioxide, solar fuel production-the combination of solar-light harvesting and the generation of efficient chemical energy carriers-by artificial molecular photosystems is very attractive. Molecular constituents that display attractive features for chemical energy conversion (such as high product selectivity and atom economy) have been developed, and their interfacing with host materials has enabled recyclability, controlled site positioning, as well as access to fundamental insights into the catalytic mechanism and environment-governed selectivity. Among the wide variety of supports, metal-organic frameworks (MOFs) possess valuable characteristics (such as their porosity and versatility) that can influence the reaction environment and material architecture in a unique fashion.

View Article and Find Full Text PDF