Publications by authors named "J H Vranken"

The process of molting represents a critical phase in the life cycle of arthropods, marking periods of growth and development. Central to this process is the eclosion hormone (EH), a neurohormone that plays a pivotal role in initiating and regulating the complex sequence of events leading to successful molting in holometabolan species. Very little information is available in Hemimetabola, which display a different kind of development characterized by gradual changes.

View Article and Find Full Text PDF

In response to an ever-increasing demand of new small molecules therapeutics, numerous chemical and genetic tools have been developed to interrogate compound mechanism of action. Owing to its ability to approximate compound-dependent changes in thermal stability, the proteome-wide thermal shift assay has emerged as a powerful tool in this arsenal. The most recent iterations have drastically improved the overall efficiency of these assays, providing an opportunity to screen compounds at a previously unprecedented rate.

View Article and Find Full Text PDF

Escherichia coli (E. coli) plays a central role as an indicator for fecal contamination to predict the possible presence of microbial pathogens in drinking water. Current detection methods for E.

View Article and Find Full Text PDF

Ergothioneine (EGT) is a diet-derived, atypical amino acid that accumulates to high levels in human tissues. Reduced EGT levels have been linked to age-related disorders, including neurodegenerative and cardiovascular diseases, while EGT supplementation is protective in a broad range of disease and aging models in mice. Despite these promising data, the direct and physiologically relevant molecular target of EGT has remained elusive.

View Article and Find Full Text PDF

Objective: Skeletal muscle plasticity and remodeling are critical for adapting tissue function to use, disuse, and regeneration. The aim of this study was to identify genes and molecular pathways that regulate the transition from atrophy to compensatory hypertrophy or recovery from injury. Here, we have used a mouse model of hindlimb unloading and reloading, which causes skeletal muscle atrophy, and compensatory regeneration and hypertrophy, respectively.

View Article and Find Full Text PDF