Image-based characterization offers a powerful approach to studying geological porous media at the nanoscale and images are critical to understanding reactive transport mechanisms in reservoirs relevant to energy and sustainability technologies such as carbon sequestration, subsurface hydrogen storage, and natural gas recovery. Nanoimaging presents a trade off, however, between higher-contrast sample-destructive and lower-contrast sample-preserving imaging modalities. Furthermore, high-contrast imaging modalities often acquire only 2D images, while 3D volumes are needed to characterize fully a source rock sample.
View Article and Find Full Text PDFInt J Neuropsychopharmacol
October 2014
Background: Selective kappa opioid receptor antagonism is a promising experimental strategy for the treatment of depression. The kappa opioid receptor antagonist, LY2456302, exhibits ~30-fold higher affinity for kappa opioid receptors over mu opioid receptors, which is the next closest identified pharmacology.
Methods: Here, we determined kappa opioid receptor pharmacological selectivity of LY2456302 by assessing mu opioid receptor antagonism using translational pupillometry in rats and humans.
Neuropharmacology
February 2014
Kappa opioid receptors and their endogenous neuropeptide ligand, dynorphin A, are densely localized in limbic and cortical areas comprising the brain reward system, and appear to play a key role in modulating stress and mood. Growing literature indicates that kappa receptor antagonists may be beneficial in the treatment of mood and addictive disorders. However, existing literature on kappa receptor antagonists has used extensively JDTic and nor-BNI which exhibit long-lasting pharmacokinetic properties that complicate experimental design and interpretation of results.
View Article and Find Full Text PDFPharmacological manipulation of opioid receptors alters feeding behavior. However, the individual contributions of each opioid receptor subtype on energy balance remain largely unknown. Herein, we investigated whether genetic disruption of the δ-opioid receptor (DOR) also controls energy homeostasis.
View Article and Find Full Text PDF