Since decades after temozolomide was approved, no effective drugs have been developed. Undoubtedly, blood-brain barrier (BBB) penetration is a severe issue that should be overcome in glioblastoma multiforme (GBM) drug development. In this research, we were inspired by linezolid through structural modification with several bioactive moieties to achieve the desired brain delivery.
View Article and Find Full Text PDFSignificance: Despite the availability of various anti-seizure medications, nearly 1/3 of epilepsy patients experience drug-resistant seizures. These patients are left with invasive surgical options that do not guarantee seizure remission. The development of novel treatment options depends on elucidating the complex biology of seizures and brain networks.
View Article and Find Full Text PDFPhosphatidylinositol (PI) is an inositol-containing phospholipid synthesized in the endoplasmic reticulum (ER). PI is a precursor lipid for PI 4,5-bisphosphate (PI(4,5)P) in the plasma membrane (PM) important for Ca signaling in response to extracellular stimuli. Thus, ER-to-PM PI transfer becomes essential for cells to maintain PI(4,5)P homeostasis during receptor stimulation.
View Article and Find Full Text PDFAlzheimer's disease (AD) is primarily driven by the formation of toxic amyloid-β (Aβ) aggregates, with Aβ42 being a pivotal contributor to disease pathology. This study investigates a novel agent to mitigate Aβ42-induced toxicity by co-assembling Aβ42 with its G37V variant (Aβ42(G37V)), where Gly at position 37 is substituted with valine. Using a combination of Thioflavin-T (Th-T) fluorescence assays, Western blot analysis, atomic force microscopy (AFM)/transmission electron microscopy (TEM), and biochemical assays, we demonstrated that adding Aβ42(G37V) significantly accelerates Aβ42 aggregation rate and mass while altering the morphology of the resulting aggregates.
View Article and Find Full Text PDF