Publications by authors named "J H Lebbink"

UvrD is a helicase vital for DNA replication and quality control processes. In its monomeric state, UvrD exhibits limited helicase activity, necessitating either dimerization or assistance from an accessory protein to efficiently unwind DNA. Within the DNA mismatch repair pathway, MutL plays a pivotal role in relaying the repair signal, enabling UvrD to unwind DNA from the strand incision site up to and beyond the mismatch.

View Article and Find Full Text PDF

Unlabelled: AXIN1 is a major component of the β-catenin destruction complex and is frequently mutated in various cancer types, particularly liver cancers. Truncating AXIN1 mutations are recognized to encode a defective protein that leads to β-catenin stabilization, but the functional consequences of missense mutations are not well characterized. Here, we first identified the GSK3β, β-catenin, and RGS/APC interaction domains of AXIN1 that are the most critical for proper β-catenin regulation.

View Article and Find Full Text PDF
Article Synopsis
  • RNA-guided type V CRISPR-Cas12 effectors, like Cas12m2, help bacteria and archaea defend against mobile genetic elements by silencing their transcription through strong DNA binding, despite lacking the ability to cleave dsDNA.
  • Researchers used cryo-electron microscopy to analyze Cas12m2 complexes with CRISPR RNA and target DNA, revealing how the complex forms and binds tightly to specific DNA regions.
  • The study suggests that the structural features of Cas12m2, especially its unique REC and RuvC domains, play key roles in its adaptive immunity and inform the evolutionary relationship between Cas12 and its ancestor, TnpB.
View Article and Find Full Text PDF

Self-renewal and differentiation of hematopoietic stem and progenitor cells (HSPCs) are carefully controlled by extrinsic and intrinsic factors, to ensure the lifelong process of hematopoiesis. Apurinic/apyrimidinic endonuclease 1 (APEX1) is a multifunctional protein implicated in DNA repair and transcriptional regulation. Although previous studies have emphasized the necessity of studying APEX1 in a lineage-specific context and its role in progenitor differentiation, no studies have assessed the role of APEX1, nor its two enzymatic domains, in supporting adult HSPC function.

View Article and Find Full Text PDF