Despite an advanced understanding of disease mechanisms, the current therapeutic regimen fails to cure most patients with acute myeloid leukemia (AML). In the present study, we address the role of ribosome assembly in leukemia cell function. We apply patient datasets and murine models to demonstrate that immature leukemia cells in mixed-lineage leukemia-rearranged AML are characterized by relatively high ribosome biogenesis and protein synthesis rates.
View Article and Find Full Text PDFHematopoietic stem cells (HSCs) react to various stress conditions. However, it is unclear whether and how HSCs respond to severe anemia. Here, we demonstrate that upon induction of acute anemia, HSCs rapidly proliferate and enhance their erythroid differentiation potential.
View Article and Find Full Text PDFBackground: Blood typing is essential for safe transfusions and is performed serologically or genetically. Genotyping predominantly focuses on coding regions, but non-coding variants may affect gene regulation, as demonstrated in the ABO, FY and XG systems. To uncover regulatory loci, we expanded a recently developed bioinformatics pipeline for discovery of non-coding variants by including additional epigenetic datasets.
View Article and Find Full Text PDFInfant and adult MLL1/KMT2A-rearranged (MLLr) leukemia represents a disease with a dismal prognosis. Here, we present a functional and proteomic characterization of in utero-initiated and adult-onset MLLr leukemia. We reveal that fetal MLL::ENL-expressing lymphomyeloid multipotent progenitors (LMPPs) are intrinsically programmed towards a lymphoid fate but give rise to myeloid leukemia in vivo, highlighting a complex interplay of intra- and extracellular factors in determining disease subtype.
View Article and Find Full Text PDF