Publications by authors named "J H Han Hegeman"

Article Synopsis
  • The study focuses on detecting multijet signatures from proton-proton collisions at a high energy of 13 TeV, analyzing a dataset totaling 128 fb^{-1}.
  • A special data scouting method is utilized to pick out events with low combined momentum in jets.
  • This research is pioneering in its investigation of electroweak particle production in R-parity violating supersymmetric models, particularly examining hadronically decaying mass-degenerate higgsinos, and it broadens the limits on the existence of R-parity violating top squarks and gluinos.
View Article and Find Full Text PDF

: Delirium in postoperative geriatric hip fracture patients is a serious and often preventable condition. If detected in time, it can be treated, but a delay in the diagnosis and initiation of treatment impairs outcomes. A novel approach to detect delirium is to use point-of-care electro-encephalogram (EEG) recording with automated analysis.

View Article and Find Full Text PDF

The first search for soft unclustered energy patterns (SUEPs) is performed using an integrated luminosity of 138  fb^{-1} of proton-proton collision data at sqrt[s]=13  TeV, collected in 2016-2018 by the CMS detector at the LHC. Such SUEPs are predicted by hidden valley models with a new, confining force with a large 't Hooft coupling. In events with boosted topologies, selected by high-threshold hadronic triggers, the multiplicity and sphericity of clustered tracks are used to reject the background from standard model quantum chromodynamics.

View Article and Find Full Text PDF

The first search for the Z boson decay to ττμμ at the CERN LHC is presented, based on data collected by the CMS experiment at the LHC in proton-proton collisions at a center-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 138  fb^{-1}. The data are compatible with the predicted background. For the first time, an upper limit at the 95% confidence level of 6.

View Article and Find Full Text PDF

Reliable predictors for electroconvulsive therapy (ECT) effectiveness would allow a more precise and personalized approach for the treatment of major depressive disorder (MDD). Prediction models were created using a priori selected clinical variables based on previous meta-analyses. Multivariable linear regression analysis was used, applying backwards selection to determine predictor variables while allowing non-linear relations, to develop a prediction model for depression outcome post-ECT (and logistic regression for remission and response as secondary outcome measures).

View Article and Find Full Text PDF