Duration-tuned neurons (DTNs) in the mammalian inferior colliculus (IC) arise from a combination of excitatory and inhibitory synaptic inputs. Previous research has shown that the inhibition responsible for creating DTNs has a shorter latency than that of excitation and lasts longer than the stimulus duration. We used monotic and dichotic paired tone stimulation and recorded responses of DTNs from the IC of the bat to assess the relative contributions of each ear in forming duration-tuned circuits.
View Article and Find Full Text PDFMost animal vocalizations, including echolocation signals used by bats, contain frequency-modulated (FM) components. Previous studies have described a class of neurons in the inferior colliculus (IC) of the big brown bat that respond exclusively to sinusoidally frequency modulated (SFM) signals and fail to respond to pure tones, noise, amplitude-modulated tones, or single FM sweeps. The aims of this study were to further characterize these neurons' response properties and to determine whether they are localized within a specific area of the IC.
View Article and Find Full Text PDFInformation processing in the inferior colliculus depends on interactions between ascending pathways and intrinsic circuitry, both of which exist within a functional tonotopic organization. To determine how local projections of neurons in the inferior colliculus are related to tonotopy, we placed a small iontophoretic injection of biodextran amine at a physiologically characterized location in the inferior colliculus. We then used electrophysiological recording to place a grid of small deposits of Chicago Sky Blue throughout the same frequency range to specify an isofrequency contour.
View Article and Find Full Text PDFAt and above the level of the inferior colliculus (IC), some neurons respond maximally to a limited range of sound durations, with little or no excitatory response to durations outside of this range. Such neurons have been termed "duration tuned" or "duration selective." In this study we examined the effects of varying signal amplitude on best duration, width of tuning, and first spike latency of duration tuned neurons in the IC of the big brown bat, Eptesicus fuscus.
View Article and Find Full Text PDFThe avian auditory midbrain nucleus, the mesencephalicus lateralis, dorsalis (MLd), is the first auditory processing stage in which multiple parallel inputs converge, and it provides the input to the auditory thalamus. We studied the responses of single MLd neurons to four types of modulated sounds: 1) white noise; 2) band-limited noise; 3) frequency modulated (FM) sweeps, and 4) sinusoidally amplitude-modulated tones (SAM) in adult male zebra finches. Responses were compared with the responses of the same neurons to pure tones in terms of temporal response patterns, thresholds, characteristic frequencies, frequency tuning bandwidths, tuning sharpness, and spike rate/intensity relationships.
View Article and Find Full Text PDF