Introduction: Genomic medicine has features that make it preference sensitive and amenable to model-based health economic evaluation. Preferences of patients, caregivers, and clinicians related to the uptake and delivery of genomic medicine technologies and services that are not captured in health state utility weights can affect the intervention's cost-effectiveness and budget impact. However, there is currently no established or agreed-on approach for integrating preference information into economic evaluations.
View Article and Find Full Text PDFIntroduction: The spread of the SARS-CoV-2 virus, which caused Coronavirus Disease 2019 (COVID-19), led to a global pandemic and public health crisis, which affected the physical health and mental well-being of Americans in every part of the country. Although the effect of the pandemic was ubiquitous, it has been more extensively studied in urban areas, which leads to an underscoring of the burden of COVID-19 in rural US. Health disparities adversely affect children in rural communities, each of which is unique and requires interventions based on regional needs.
View Article and Find Full Text PDFMost genetic risk variants linked to ocular diseases are non-protein coding and presumably contribute to disease through dysregulation of gene expression, however, deeper understanding of their mechanisms of action has been impeded by an incomplete annotation of the transcriptional regulatory elements across different retinal cell types. To address this knowledge gap, we carried out single-cell multiomics assays to investigate gene expression, chromatin accessibility, DNA methylome and 3D chromatin architecture in human retina, macula, and retinal pigment epithelium (RPE)/choroid. We identified 420,824 unique candidate regulatory elements and characterized their chromatin states in 23 sub-classes of retinal cells.
View Article and Find Full Text PDFBackground & Aims: Metabolic dysfunction-associated steatotic liver disease ranges from metabolic dysfunction-associated steatotic liver (MASL) to metabolic dysfunction-associated steatohepatitis (MASH) with fibrosis. Transdifferentiation of hepatic stellate cells (HSCs) into fibrogenic myofibroblasts plays a critical role in the pathogenesis of MASH liver fibrosis. We compared transcriptome and chromatin accessibility of human HSCs from NORMAL, MASL, and MASH livers at single-cell resolution.
View Article and Find Full Text PDF