Publications by authors named "J H Bardarson"

We demonstrate that slow growth of the number entropy following a quench from a local product state is consistent with many-body localization. To do this, we construct a novel random circuit ℓ-bit model with exponentially localized ℓ-bits and exponentially decaying interactions between them. We observe an ultraslow growth of the number entropy starting from a Néel state, saturating at a value that grows with system size.

View Article and Find Full Text PDF

Local topological markers, topological invariants evaluated by local expectation values, are valuable for characterizing topological phases in materials lacking translation invariance. The Chern marker-the Chern number expressed in terms of the Fourier transformed Chern character-is an easily applicable local marker in even dimensions, but there are no analogous expressions for odd dimensions. We provide general analytic expressions for local markers for free-fermion topological states in odd dimensions protected by local symmetries: a Chiral marker, a local Z marker which in case of translation invariance is equivalent to the chiral winding number, and a Chern-Simons marker, a local Z_{2} marker characterizing all nonchiral phases in odd dimensions.

View Article and Find Full Text PDF

We show that Weyl semimetals exhibit a mixed axial-torsional anomaly in the presence of axial torsion, a concept exclusive of these materials with no known natural fundamental interpretation in terms of the geometry of spacetime. This anomaly implies a nonconservation of the axial current-the difference in the current of left- and right-handed chiral fermions-when the torsion of the spacetime in which the Weyl fermions move couples with opposite sign to different chiralities. The anomaly is activated by driving transverse sound waves through a Weyl semimetal with a spatially varying tilted dispersion, which can be engineered by applying strain.

View Article and Find Full Text PDF

In this paper we consider charge current generated by maintaining a temperature difference over a nanowire at zero voltage bias. For topological insulator nanowires in a perpendicular magnetic field the current can change sign as the temperature of one end is increased. Here we study how this thermoelectric current sign reversal depends on the magnetic field and how impurities affect the size of the thermoelectric current.

View Article and Find Full Text PDF

We calculate the charge current generated by a temperature bias between the two ends of a tubular nanowire. We show that in the presence of a transversal magnetic field the current can change sign; i.e.

View Article and Find Full Text PDF