In the presence of molecular oxygen, edible oils can be oxidized to form a multitude of α,β-unsaturated carbonyl products collectively called 'lipid-derived electrophiles'. These molecules affect the taste of fat-containing foods but also act as electrophiles by covalently binding to protein amines/thiols and DNA nucleotides. The chemical modification of proteins by lipid-derived electrophiles appears to play an important role in human health, but the quantification of this diverse class of compounds remains a challenge.
View Article and Find Full Text PDFProtein misfolding in the endoplasmic reticulum (ER) of podocytes contributes to the pathogenesis of glomerular diseases. Protein misfolding activates the unfolded protein response (UPR), a compensatory signaling network. We address the role of the UPR and the UPR transducer, inositol-requiring enzyme 1α (IRE1α), in streptozotocin-induced diabetic nephropathy in mice.
View Article and Find Full Text PDFBackground: Human glomerulonephritis (GN)-membranous nephropathy (MN), focal segmental glomerulosclerosis (FSGS) and IgA nephropathy (IgAN), as well as diabetic nephropathy (DN) are leading causes of chronic kidney disease. In these glomerulopathies, distinct stimuli disrupt metabolic pathways in glomerular cells. Other pathways, including the endoplasmic reticulum (ER) unfolded protein response (UPR) and autophagy, are activated in parallel to attenuate cell injury or promote repair.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
June 2022
Glomerular diseases involving podocyte/glomerular epithelial cell (GEC) injury feature protein misfolding and endoplasmic reticulum (ER) stress. Inositol-requiring enzyme 1α (IRE1α) mediates chaperone production and autophagy during ER stress. We examined the role of IRE1α in selective autophagy of the ER (reticulophagy).
View Article and Find Full Text PDF